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The bounded control case

Consider optimal control problem with ẏ = f(t, y, u), u ∈ U compact.

Convex approach via Lasserre hierarchies:

1 Generalize control objects (1940s-1950s: Young, Filippov, . . . ).

2 Lift problem as measure LP (1970s-1980s: Rubio, Vinter, . . . ).

3 Solve by semi-definite relaxations (2000s-2010s: Lasserre, . . . ).

What if U = Rm?
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Example: concentration effects

J = inf

∫ 1

0
(t− 1

2
)2udt

s.t. ẏ = u,

y(0) = 0, y(1) = 1

u ∈ L1([0, 1]).

Minimizing sequence:

yn(t)

t

un(t)

t1
2

1
2

1

Claeys, Henrion, Kruž́ık SDP relaxations for unbounded control July 8, 2014 3 / 25



Example: concentration effects

J = inf

∫ 1

0
(t− 1

2
)2udt

s.t. ẏ = u,
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Example: concentration and oscillation effects

J = inf

∫ 1

0

(
u2

1 + u4
+ (y − t)2

)
dt

s.t. ẏ = u

y(0) = 0

u ∈ L1([0, 1]).
0 2 4 6 8 10

0

0.2

0.4

Minimizing sequence:

yn(t)

t

un(t)

t

y = t
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This talk

How to treat those problems with Lasserre hierarchy, as for the bounded
control case [Lasserre et al.: ’08].

Use DiPerna-Majda measures [’87] as relaxed control objects.

=⇒ extends [Kruž́ık, Roub́ıček: ’98] for non-convex problem.
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DiPerna-Majda measures

Define appropriate [DiPerna, Majda: ’87] compactification of control space
Rm by γRm.

Example: for m = 1, γR is the two-point compactification of the real line.

Theorem (DiPerna and Majda)

For bounded {uk}k∈N in Lp([t0, tf ];Rm), ∃ subsequence, σ ∈M+([t0, tf ])
and ν(dū|t) ∈ P(γRm) defined σ-a.e. such that for any g ∈ C([t0, tf ])
and any w ∈ R:

lim
k→∞

∫ tf

t0

g(t)v(uk(t))dt =

∫ tf

t0

∫
γRm

g(t)w(ū)ν(dū|t)σ(dt) ,

where v(ū) = w(ū)(1 + |ū|p).

Example: to u ∈ Lp corresponds σ = (1 + |u(t)|p) dt and ν = δu(t)(dū|t).
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Relaxed OCP

J = min
u

∫ tf

t0

h(t, y(t), u(t)) dt

s.t. ẏ = f(t, y(t), u(t))

u(t) ∈ Lp([t0, tf ];Rm)

Relaxed as:

Jr = min
σ,ν

∫ tf

t0

∫
γRm

h(t, y(t), ū)

1 + |ū|p
ν(dū|t)σ(dt)

s.t. ẏ =

∫
γRm

f(t, y(t), ū)

1 + |ū|p
ν(dū|t)σ,

(σ, ν) ∈ DMp([t0, tf ];Rm)

See [Kruž́ık, Roub́ıček: ’98].

Claeys, Henrion, Kruž́ık SDP relaxations for unbounded control July 8, 2014 8 / 25



Relaxed OCP

J = min
u

∫ tf

t0

h(t, y(t), u(t)) dt
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Occupation measures

Fix admissible (σ, ν, y):

ȳ

t

y(t)

z(ϑ)

ξ(B|t) :=

{
δy(t)(B) if t /∈ J∫ dt
0 IB(zt(ϑ))/dt dϑ otherwise

µ(dtdȳdū) := ξ(dȳ|t) ν(dū|t)σ(dt)
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Weak ODE integration

Test µ with v ∈ C1(T × Y ) along trajectories of admissible.

Proposition

v(tf , x(t+f ))− v(t0, x(t−0 )) = 〈∂v
∂t

1

1 + |ū|p
+
∂v

∂ȳ

f(t, ȳ, ū)

1 + |ū|p
, µ〉
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∂ȳ

f(t, ȳ, ū)
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Claeys, Henrion, Kruž́ık SDP relaxations for unbounded control July 8, 2014 10 / 25



The measure LP

Convex relaxation:

Jmeas = inf
µ
〈h(t, ȳ, ū)

1 + |ū|p
, µ〉

s.t. ∀v ∈ C1(T × Y ) :

v(tf , y(t+f ))− v(t0, y(t−0 )) = 〈∂v
∂t

1

1 + |ū|p
+
∂v

∂ȳ

f(t, ȳ, ū)

1 + |ū|p
, µ〉

µ ∈M+(T × Y × γRm).

Compare this with [Vinter, Lewis: SICON ’78] or [Vinter: SICON ’93].
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The moment approach

Optimization
problem

LP on
measures

LP on
moments

Semi-definite
relaxation(s)
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Moments

Moments: zα = 〈xα, µ〉

Moment matrix: M(z) =


z0 z1 z2 · · ·
z1 z2 z3
z2 z3 z4
...

. . .



Let X := {x ∈ Rn : gi(x) ≥ 0, i = 1, ...,m}

Theorem (Putinar)

µ ∈M+(X) iff:

M(z) � 0, M(gi ∗ z) � 0 ∀i
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The moment approach

Optimization
problem

LP
on measures

LP
on moments

Semi-definite
relaxation(s)
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Semi-definite relaxations

Use only (zα)|α|≤2r.

Theorem (Lasserre)

Jrmom ↑ Jmeas

Each relaxation is a standard semi-definite program. Can be solved by
dedicated software.

GloptiPoly [Henrion et al.]: toolbox for automatic generation of the SDP
relaxations from the measure LP.
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Reconstructing trajectories

Support of occupation measure = optimal trajectory(ies)/control(s).

[MC: CDC ’14] Simple procedure (see also [Rubio: ’86]):

1 Choose state/control to identify

2 Fix time and state/control grid Xε

3 Find best atomic approximation µ̃ ∈M+(Xε) on the grid via

λ∗ε = min
µ̃,λ

λ

s.t. |zα − 〈xα, µ̃〉| ≤ λ

4 Approximate support = non-zero atoms.
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Example: concentration

inf

∫ 1

0
(t− 1

2
)2udt

s.t. ẏ = u,

y(0) = 0, y(1) = 1

u ∈ L1([0, 1]).

σ∗(dt) = dt+ δ 1
2
(dt)

ν∗(dū|t) =

{
δ0(dū) if t 6= 1

2 ,

δ+∞(dū) if t = 1
2 .

y∗(t) = stept= 1
2
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s.t. ẏ = u,

y(0) = 0, y(1) = 1

u ∈ L1([0, 1]).

σ∗(dt) = dt+ δ 1
2
(dt)

ν∗(dū|t) =

{
δ0(dū) if t 6= 1

2 ,

δ+∞(dū) if t = 1
2 .

y∗(t) = stept= 1
2(

Lz(t
k)
)
k∈N

= (2.0000, 1.0000, 0.5833, 0.3750, 0.2625, 0.1979, . . .),(
〈tk, σ∗〉

)
k∈N

= (2.0000, 1.0000, 0.5833, 0.3750, 0.2625, 0.1979, . . .).
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Example: concentration

inf

∫ 1

0
(t− 1

2
)2udt

s.t. ẏ = u,

y(0) = 0, y(1) = 1

u ∈ L1([0, 1]).

σ∗(dt) = dt+ δ 1
2
(dt)

ν∗(dū|t) =

{
δ0(dū) if t 6= 1

2 ,

δ+∞(dū) if t = 1
2 .

y∗(t) = stept= 1
2
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Example: concentration and oscillations

inf

∫ 1

0

(
u2

1 + u4
+ (y − t)2

)
dt

s.t. ẏ = u

y(0) = 0

u ∈ L1([0, 1]).

σ∗(dt) = 2dt

ν∗(dū|t) =
1

2
δ0(dū) +

1

2
δ+∞(dū)

y∗(t) = t
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Example: concentration and oscillations

inf

∫ 1

0

(
u2

1 + u4
+ (y − t)2

)
dt

s.t. ẏ = u

y(0) = 0

u ∈ L1([0, 1]).

σ∗(dt) = 2dt

ν∗(dū|t) =
1

2
δ0(dū) +

1

2
δ+∞(dū)

y∗(t) = t

(
Lz(t

k)
)
k∈N

= (2.0026, 1.0026, 0.6692, 0.5026, 0.4026, 0.3359, . . .),(
〈tk, σ∗〉

)
k∈N

= (2.0000, 1.0000, 0.6667, 0.5000, 0.4000, 0.3333, . . .),
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Example: concentration and oscillations
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The moment approach

Optimization
problem

LP
on measures

LP
on moments

Semi-definite
relaxation(s)
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Highlights of the method

Common framework for concentration and oscillation effects.

Global resolution, even for non-convex problems.

Easy handling of state constraints.

Straightforward to implement in GloptiPoly.

Currently n+m ≤ 5, but SDP solvers are getting faster (Mosek) . . .
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Thanks!

Presentation and paper version available at

http://mathclaeys.wordpress.com

Mini-course on polynomial optimization: D. Henrion (Th. 10:30,
A901), M. Putinar (Th. 11:30, A901), MC (Fr. 10:30, A901), M.
Korda (Fr. 11:30, A901).

This research was supported by the AVČR-CNRS project
“Semidefinite programming for nonconvex problems of calculus of
variations and optimal control”.
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