Semidefinite relaxations for optimal control problems with oscillation and concentration effects

Mathieu Claeys, Cambridge, UK Didier Henrion, LAAS-CNRS, France Martin Kružík, UTIA, Czech Republic

July 8, 2014

Convex approach via Lasserre hierarchies:

Convex approach via Lasserre hierarchies:

Generalize control objects (1940s-1950s: Young, Filippov, ...).

Convex approach via Lasserre hierarchies:

- Generalize control objects (1940s-1950s: Young, Filippov, ...).
- 2 Lift problem as measure LP (1970s-1980s: Rubio, Vinter, ...).

Convex approach via Lasserre hierarchies:

- Generalize control objects (1940s-1950s: Young, Filippov, ...).
- Iift problem as measure LP (1970s-1980s: Rubio, Vinter, ...).
- Solve by semi-definite relaxations (2000s-2010s: Lasserre, ...).

Convex approach via Lasserre hierarchies:

- Generalize control objects (1940s-1950s: Young, Filippov, ...).
- Iift problem as measure LP (1970s-1980s: Rubio, Vinter, ...).
- Solve by semi-definite relaxations (2000s-2010s: Lasserre, ...).

What if $U = \mathbb{R}^m$?

Example: concentration effects

$$J = \inf \int_0^1 (t - \frac{1}{2})^2 u \, dt$$

s.t. $\dot{y} = u$,
 $y(0) = 0$, $y(1) = 1$
 $u \in L^1([0, 1])$.

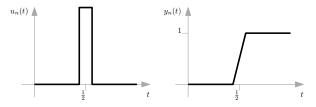
▲ ■ ▶ ■ ∽ ९ ୯ July 8, 2014 3 / 25

Example: concentration effects

$$J = \inf \int_0^1 (t - \frac{1}{2})^2 u \, dt$$

s.t. $\dot{y} = u$,
 $y(0) = 0$, $y(1) = 1$
 $u \in L^1([0, 1])$.

Minimizing sequence:



Example: concentration and oscillation effects

~

$$J = \inf \int_{0}^{1} \left(\frac{u^{2}}{1+u^{4}} + (y-t)^{2} \right) dt$$

s.t. $\dot{y} = u$
 $y(0) = 0$
 $u \in L^{1}([0,1]).$
$$0.4$$

 0.2
 0
 $0 = 2$
 0
 0
 0
 2
 4
 6
 8
 10

July 8, 2014 4 / 25

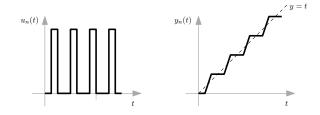
Example: concentration and oscillation effects

$$J = \inf \int_{0}^{1} \left(\frac{u^{2}}{1+u^{4}} + (y-t)^{2} \right) dt$$

s.t. $\dot{y} = u$
 $y(0) = 0$
 $u \in L^{1}([0,1]).$
$$0.4$$

 0.2
 0
 0
 0
 0
 0
 2
 4
 6
 8
 10

Minimizing sequence:



This talk

How to treat those problems with Lasserre hierarchy, as for the bounded control case [Lasserre et al.: '08].

This talk

How to treat those problems with Lasserre hierarchy, as for the bounded control case [Lasserre et al.: '08].

Use DiPerna-Majda measures ['87] as relaxed control objects.

This talk

- How to treat those problems with Lasserre hierarchy, as for the bounded control case [Lasserre et al.: '08].
- Use DiPerna-Majda measures ['87] as relaxed control objects.

 \implies extends [Kružík, Roubíček: '98] for non-convex problem.

Table of contents

2 Semi-definite hierarchy

Define appropriate [DiPerna, Majda: '87] compactification of control space \mathbb{R}^m by $\gamma \mathbb{R}^m$.

Define appropriate [DiPerna, Majda: '87] compactification of control space \mathbb{R}^m by $\gamma \mathbb{R}^m$. Example: for m = 1, $\gamma \mathbb{R}$ is the two-point compactification of the real line.

Define appropriate [DiPerna, Majda: '87] compactification of control space \mathbb{R}^m by $\gamma \mathbb{R}^m$. Example: for m = 1, $\gamma \mathbb{R}$ is the two-point compactification of the real line.

Theorem (DiPerna and Majda)

For bounded $\{u_k\}_{k\in\mathbb{N}}$ in $L^p([t_0, t_f]; \mathbb{R}^m)$, \exists subsequence, $\sigma \in \mathcal{M}^+([t_0, t_f])$ and $\nu(\mathrm{d}\bar{u}|t) \in \mathcal{P}(\gamma\mathbb{R}^m)$ defined σ -a.e. such that for any $g \in C([t_0, t_f])$ and any $w \in \mathcal{R}$:

$$\lim_{k\to\infty}\int_{t_0}^{t_f}g(t)v(u_k(t))\mathrm{d}t \ = \int_{t_0}^{t_f}\int_{\gamma\mathbb{R}^m}g(t)w(\bar{u})\nu(\mathrm{d}\bar{u}|t)\sigma(\mathrm{d}t) \ ,$$

where $v(\bar{u}) = w(\bar{u})(1 + |\bar{u}|^p)$.

Define appropriate [DiPerna, Majda: '87] compactification of control space \mathbb{R}^m by $\gamma \mathbb{R}^m$. Example: for m = 1, $\gamma \mathbb{R}$ is the two-point compactification of the real line.

Theorem (DiPerna and Majda)

For bounded $\{u_k\}_{k\in\mathbb{N}}$ in $L^p([t_0, t_f]; \mathbb{R}^m)$, \exists subsequence, $\sigma \in \mathcal{M}^+([t_0, t_f])$ and $\nu(\mathrm{d}\bar{u}|t) \in \mathcal{P}(\gamma\mathbb{R}^m)$ defined σ -a.e. such that for any $g \in C([t_0, t_f])$ and any $w \in \mathcal{R}$:

$$\lim_{k\to\infty}\int_{t_0}^{t_f}g(t)v(u_k(t))\mathrm{d}t \ = \int_{t_0}^{t_f}\int_{\gamma\mathbb{R}^m}g(t)w(\bar{u})\nu(\mathrm{d}\bar{u}|t)\sigma(\mathrm{d}t) \ .$$

where $v(\bar{u}) = w(\bar{u})(1 + |\bar{u}|^p)$.

Example: to $u \in L^p$ corresponds $\sigma = (1 + |u(t)|^p) dt$ and $\nu = \delta_{u(t)}(d\bar{u}|t)$.

Relaxed OCP

$$J = \min_{u} \int_{t_0}^{t_f} h(t, y(t), u(t)) dt$$

s.t. $\dot{y} = f(t, y(t), u(t))$
 $u(t) \in L^p([t_0, t_f]; \mathbb{R}^m)$

イロト イ団ト イヨト イヨト

Relaxed OCP

$$J = \min_{u} \int_{t_0}^{t_f} h(t, y(t), u(t)) dt$$

s.t. $\dot{y} = f(t, y(t), u(t))$
 $u(t) \in L^p([t_0, t_f]; \mathbb{R}^m)$

Relaxed as:

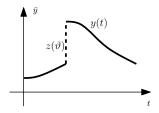
$$J_r = \min_{\sigma,\nu} \int_{t_0}^{t_f} \int_{\gamma \mathbb{R}^m} \frac{h(t, y(t), \bar{u})}{1 + |\bar{u}|^p} \nu(\mathrm{d}\bar{u}|t) \sigma(\mathrm{d}t)$$

s.t. $\dot{y} = \int_{\gamma \mathbb{R}^m} \frac{f(t, y(t), \bar{u})}{1 + |\bar{u}|^p} \nu(\mathrm{d}\bar{u}|t) \sigma,$
 $(\sigma, \nu) \in \mathcal{DM}^p([t_0, t_f]; \mathbb{R}^m)$

See [Kružík, Roubíček: '98].

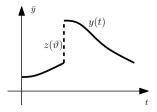
Occupation measures

Fix admissible (σ, ν, y) :



Occupation measures

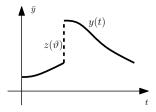
Fix admissible (σ, ν, y) :



$$\xi(B|t) := \begin{cases} \delta_{y(t)}(B) & \text{if } t \notin J \\ \int_0^{d_t} I_B(z_t(\vartheta))/d_t \, \mathrm{d}\vartheta & \text{otherwise} \end{cases}$$

Occupation measures

Fix admissible (σ, ν, y) :



$$\xi(B|t) := \begin{cases} \delta_{y(t)}(B) & \text{if } t \notin J \\ \int_0^{d_t} I_B(z_t(\vartheta))/d_t \, \mathrm{d}\vartheta & \text{otherwise} \end{cases}$$

 $\mu(\mathrm{d} t \mathrm{d} \bar{y} \mathrm{d} \bar{u}) := \xi(\mathrm{d} \bar{y} | t) \, \nu(\mathrm{d} \bar{u} | t) \, \sigma(\mathrm{d} t)$

Weak ODE integration

Test μ with $v \in C^1(T \times Y)$ along trajectories of admissible.

Weak ODE integration

Test μ with $v \in C^1(T \times Y)$ along trajectories of admissible.

Proposition $v(t_f, x(t_f^+)) - v(t_0, x(t_0^-)) = \langle \frac{\partial v}{\partial t} \frac{1}{1 + |\bar{u}|^p} + \frac{\partial v}{\partial \bar{y}} \frac{f(t, \bar{y}, \bar{u})}{1 + |\bar{u}|^p}, \mu \rangle$

The measure LP

Convex relaxation:

$$\begin{split} J_{meas} &= \inf_{\mu} \ \langle \frac{h(t,\bar{y},\bar{u})}{1+|\bar{u}|^{p}}, \mu \rangle \\ \text{s.t.} \ \forall v \in C^{1}(T \times Y) : \\ v(t_{f},y(t_{f}^{+})) - v(t_{0},y(t_{0}^{-})) &= \langle \frac{\partial v}{\partial t} \frac{1}{1+|\bar{u}|^{p}} + \frac{\partial v}{\partial \bar{y}} \frac{f(t,\bar{y},\bar{u})}{1+|\bar{u}|^{p}}, \mu \rangle \\ \mu \in \mathcal{M}^{+}(T \times Y \times \gamma \mathbb{R}^{m}). \end{split}$$

- ∢ ∃ ▶

The measure LP

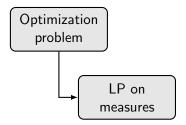
Convex relaxation:

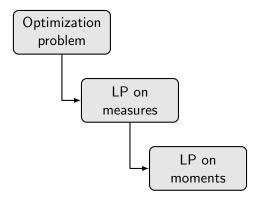
$$\begin{split} J_{meas} &= \inf_{\mu} \ \langle \frac{h(t,\bar{y},\bar{u})}{1+|\bar{u}|^{p}}, \mu \rangle \\ \text{s.t.} \ \forall v \in C^{1}(T \times Y) : \\ v(t_{f},y(t_{f}^{+})) - v(t_{0},y(t_{0}^{-})) &= \langle \frac{\partial v}{\partial t} \frac{1}{1+|\bar{u}|^{p}} + \frac{\partial v}{\partial \bar{y}} \frac{f(t,\bar{y},\bar{u})}{1+|\bar{u}|^{p}}, \mu \rangle \\ \mu \in \mathcal{M}^{+}(T \times Y \times \gamma \mathbb{R}^{m}). \end{split}$$

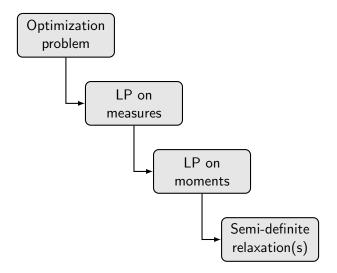
Compare this with [Vinter, Lewis: SICON '78] or [Vinter: SICON '93].

Table of contents

2 Semi-definite hierarchy







∃ →

< ∃ >

Moments

• Moments:
$$z_{\alpha} = \langle x^{\alpha}, \mu \rangle$$

イロト イ団ト イヨト イヨト

Moments

• Moments: $z_{\alpha} = \langle x^{\alpha}, \mu \rangle$

• Moment matrix:
$$M(z) = \begin{bmatrix} z_0 & z_1 & z_2 & \cdots \\ z_1 & z_2 & z_3 & z_4 \\ z_2 & z_3 & z_4 & \\ \vdots & & \ddots \end{bmatrix}$$

æ July 8, 2014 14 / 25

э.

• • • • • • • • • • • •

Moments

• Moments: $z_{\alpha} = \langle x^{\alpha}, \mu \rangle$

• Moment matrix:
$$M(z) = \begin{bmatrix} z_0 & z_1 & z_2 & \cdots \\ z_1 & z_2 & z_3 \\ z_2 & z_3 & z_4 \\ \vdots & & \ddots \end{bmatrix}$$

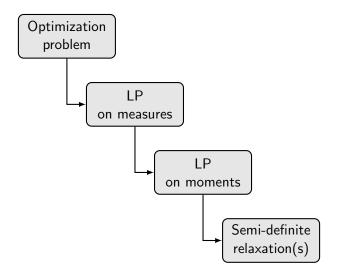
• Let
$$\mathbf{X} := \{x \in \mathbb{R}^n : g_i(x) \ge 0, \quad i = 1, ..., m\}$$

Theorem (Putinar)

 $\mu \in \mathcal{M}^+(\mathbf{X}) \text{ iff:}$ $M(z) \succeq 0, \qquad M(g_i * z) \succeq 0 \quad \forall i$

Claeys, Henrion, Kružík

イロト 不得下 イヨト イヨト



Claevs, Henrion, Kružík

э July 8, 2014 15 / 25

э.

→ ∃ →

Use only $(z_{\alpha})_{|\alpha| \leq 2r}$.

Use only $(z_{\alpha})_{|\alpha| \leq 2r}$.

Theorem (Lasserre)

$J_{mom}^r \uparrow J_{meas}$

→ ∃ →

Use only $(z_{\alpha})_{|\alpha| \leq 2r}$.

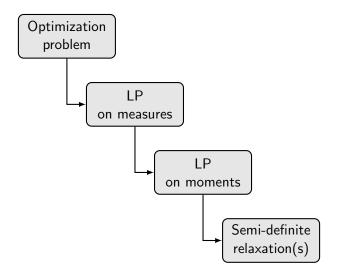
Each relaxation is a standard semi-definite program. Can be solved by dedicated software.

Use only $(z_{\alpha})_{|\alpha| \leq 2r}$.

Each relaxation is a standard semi-definite program. Can be solved by dedicated software.

GloptiPoly [Henrion et al.]: toolbox for automatic generation of the SDP relaxations from the measure LP.

The moment approach



Claevs, Henrion, Kružík

э.

→ ∃ →

Reconstructing trajectories

Support of occupation measure = optimal trajectory(ies)/control(s).

Reconstructing trajectories

Support of occupation measure = optimal trajectory(ies)/control(s).

[MC: CDC '14] Simple procedure (see also [Rubio: '86]):

Reconstructing trajectories

Support of occupation measure = optimal trajectory(ies)/control(s).

[MC: CDC '14] Simple procedure (see also [Rubio: '86]):

Choose state/control to identify

Support of occupation measure = optimal trajectory(ies)/control(s).

[MC: CDC '14] Simple procedure (see also [Rubio: '86]):

- Choose state/control to identify
- 2 Fix time and state/control grid X_{ε}

Support of occupation measure = optimal trajectory(ies)/control(s).

[MC: CDC '14] Simple procedure (see also [Rubio: '86]):

- Choose state/control to identify
- **2** Fix time and state/control grid X_{ε}
- **③** Find best atomic approximation $\tilde{\mu} \in \mathcal{M}^+(X_{\varepsilon})$ on the grid via

$$egin{aligned} \lambda^*_arepsilon &= \min_{ ilde{\mu},\lambda} \ & ext{ s.t. } |z_lpha - \langle x^lpha, ilde{\mu}
angle | \leq \lambda \end{aligned}$$

Support of occupation measure = optimal trajectory(ies)/control(s).

[MC: CDC '14] Simple procedure (see also [Rubio: '86]):

- Choose state/control to identify
- **2** Fix time and state/control grid X_{ε}
- **③** Find best atomic approximation $\tilde{\mu} \in \mathcal{M}^+(X_{\varepsilon})$ on the grid via

$$\begin{split} \lambda_{\varepsilon}^{*} &= \min_{\tilde{\mu}, \lambda} \lambda \\ \text{s.t.} \; |z_{\alpha} - \langle x^{\alpha}, \tilde{\mu} \rangle| \leq \lambda \end{split}$$

Approximate support = non-zero atoms.

Table of contents

2 Semi-definite hierarchy

inf
$$\int_{0}^{1} (t - \frac{1}{2})^{2} u \, dt$$

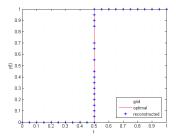
s.t. $\dot{y} = u$,
 $y(0) = 0$, $y(1) = 1$
 $u \in L^{1}([0, 1])$.

$$\begin{split} \inf & \int_0^1 (t - \frac{1}{2})^2 u \, \mathrm{d}t & \sigma^*(\mathrm{d}t) = \mathrm{d}t + \delta_{\frac{1}{2}}(\mathrm{d}t) \\ \text{s.t.} & \dot{y} = u, \\ & y(0) = 0, \quad y(1) = 1 \\ & u \in L^1([0, 1]). & \nu^*(\mathrm{d}\bar{u}|t) = \begin{cases} \delta_0(\mathrm{d}\bar{u}) & \text{if } t \neq \frac{1}{2}, \\ \delta_{+\infty}(\mathrm{d}\bar{u}) & \text{if } t = \frac{1}{2}. \end{cases} \\ \end{split}$$

$$\begin{split} \inf & \int_0^1 (t - \frac{1}{2})^2 u \, \mathrm{d}t & \sigma^*(\mathrm{d}t) = \mathrm{d}t + \delta_{\frac{1}{2}}(\mathrm{d}t) \\ \text{s.t.} & \dot{y} = u, \\ & y(0) = 0, \quad y(1) = 1 \\ & u \in L^1([0, 1]). & \nu^*(\mathrm{d}\bar{u}|t) = \begin{cases} \delta_0(\mathrm{d}\bar{u}) & \text{if } t \neq \frac{1}{2}, \\ \delta_{+\infty}(\mathrm{d}\bar{u}) & \text{if } t = \frac{1}{2}. \end{cases} \\ \end{split}$$

 $\left(L_z(t^k) \right)_{k \in \mathbb{N}} = (2.0000, \ 1.0000, \ 0.5833, \ 0.3750, \ 0.2625, \ 0.1979, \ \ldots), \\ \left(\langle t^k, \sigma^* \rangle \right)_{k \in \mathbb{N}} = (2.0000, \ 1.0000, \ 0.5833, \ 0.3750, \ 0.2625, \ 0.1979, \ \ldots).$

$$\begin{split} \inf & \int_0^1 (t - \frac{1}{2})^2 u \, \mathrm{d}t & \sigma^*(\mathrm{d}t) = \mathrm{d}t + \delta_{\frac{1}{2}}(\mathrm{d}t) \\ \text{s.t.} & \dot{y} = u, \\ & y(0) = 0, \quad y(1) = 1 \\ & u \in L^1([0, 1]). & \nu^*(\mathrm{d}\bar{u}|t) = \begin{cases} \delta_0(\mathrm{d}\bar{u}) & \text{if } t \neq \frac{1}{2}, \\ \delta_{+\infty}(\mathrm{d}\bar{u}) & \text{if } t = \frac{1}{2}. \end{cases} \\ y^*(t) = \operatorname{step}_{t = \frac{1}{2}} \end{split}$$



Claeys, Henrion, Kružík

탄▶ ◀ Ē▶ Ē ∽ �. July 8, 2014 20 / 25

- A 🖃

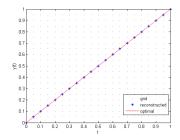
inf
$$\int_{0}^{1} \left(\frac{u^{2}}{1+u^{4}} + (y-t)^{2} \right) dt$$

s.t. $\dot{y} = u$
 $y(0) = 0$
 $u \in L^{1}([0,1]).$

$$\begin{split} \inf & \int_0^1 \left(\frac{u^2}{1+u^4} + (y-t)^2 \right) \mathrm{d}t & \sigma^*(\mathrm{d}t) = 2\mathrm{d}t \\ \text{s.t.} & \dot{y} = u & \nu^*(\mathrm{d}\bar{u}|t) = \frac{1}{2}\delta_0(\mathrm{d}\bar{u}) + \frac{1}{2}\delta_{+\infty}(\mathrm{d}\bar{u}) \\ & y(0) = 0 & & y^*(t) = t \\ & u \in L^1([0,1]). & y^*(t) = t \end{split}$$

 $\left(L_z(t^k) \right)_{k \in \mathbb{N}} = (2.0026, 1.0026, 0.6692, 0.5026, 0.4026, 0.3359, \ldots),$ $\left(\left\langle t^k, \sigma^* \right\rangle \right)_{k \in \mathbb{N}} = (2.0000, 1.0000, 0.6667, 0.5000, 0.4000, 0.3333, \ldots),$

$$\begin{split} \inf & \int_0^1 \left(\frac{u^2}{1+u^4} + (y-t)^2 \right) \mathrm{d}t & \sigma^*(\mathrm{d}t) = 2\mathrm{d}t \\ \text{s.t.} & \dot{y} = u & \nu^*(\mathrm{d}\bar{u}|t) = \frac{1}{2}\delta_0(\mathrm{d}\bar{u}) + \frac{1}{2}\delta_{+\infty}(\mathrm{d}\bar{u}) \\ & y(0) = 0 & & y^*(t) = t \\ & u \in L^1([0,1]). & y^*(t) = t \end{split}$$



Claeys, Henrion, Kružík

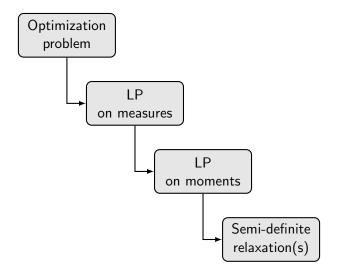
July 8, 2014 21 / 25

э

Table of contents

2 Semi-definite hierarchy

The moment approach



э.

→ ∃ →

Highlights of the method

• Common framework for concentration and oscillation effects.

- Common framework for concentration and oscillation effects.
- Global resolution, even for non-convex problems.

- Common framework for concentration and oscillation effects.
- Global resolution, even for non-convex problems.
- Easy handling of state constraints.

- Common framework for concentration and oscillation effects.
- Global resolution, even for non-convex problems.
- Easy handling of state constraints.
- Straightforward to implement in GloptiPoly.

- Common framework for concentration and oscillation effects.
- Global resolution, even for non-convex problems.
- Easy handling of state constraints.
- Straightforward to implement in GloptiPoly.
- Currently $n+m \leq 5$, but SDP solvers are getting faster (Mosek) ...

Thanks!

• Presentation and paper version available at

http://mathclaeys.wordpress.com

- Mini-course on polynomial optimization: D. Henrion (Th. 10:30, A901), M. Putinar (Th. 11:30, A901), MC (Fr. 10:30, A901), M. Korda (Fr. 11:30, A901).
- This research was supported by the AVČR-CNRS project "Semidefinite programming for nonconvex problems of calculus of variations and optimal control".