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The bounded control case

Consider optimal control problem with y = f(¢,y,u), u € U compact.
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The bounded control case

Consider optimal control problem with y = f(¢,y,u), u € U compact.

Convex approach via Lasserre hierarchies:
@ Generalize control objects (1940s-1950s: Young, Filippov, ...).
@ Lift problem as measure LP (1970s-1980s: Rubio, Vinter, ...).
© Solve by semi-definite relaxations (2000s-2010s: Lasserre, ... ).

What if U = R™?
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Example: concentration effects
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Example: concentration effects

Minimizing sequence:

Uy, (t) yn(t)
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Example: concentration and oscillation effects
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Example: concentration and oscillation effects

1 2 047 |
J:'f/ Y - at
m 0 1+U4+(y ) 0.2 B
st. y=u
y([)):[) 0 ! !

. 0 2 4 6 8 10
u e LH([0,1).

Minimizing sequence:

n(t) Yn(t)
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This talk

How to treat those problems with Lasserre hierarchy, as for the bounded
control case [Lasserre et al.: '08].
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This talk

How to treat those problems with Lasserre hierarchy, as for the bounded
control case [Lasserre et al.: '08].

Use DiPerna-Majda measures ['87] as relaxed control objects.

— extends [KruZik, Roubitek: '98] for non-convex problem.
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DiPerna-Majda measures

Define appropriate [DiPerna, Majda: '87] compactification of control space
R™ by vR™.
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DiPerna-Majda measures

Define appropriate [DiPerna, Majda: '87] compactification of control space
R™ by vR™.
Example: for m = 1, 7R is the two-point compactification of the real line.

Theorem (DiPerna and Majda)

For bounded {uy}ren in LP([to, tf]; R™), 3 subsequence, ¢ € M ([to,ty])
and v(dult) € P(yR™) defined o-a.e. such that for any g € C([to,ts])
and any w € R:

i [ gptu®i = [ [ gtu@paolan

k—o00 to to ,YRm

where v() = w(@)(1 + |al?).
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DiPerna-Majda measures

Define appropriate [DiPerna, Majda: '87] compactification of control space
R™ by vR™.
Example: for m = 1, 7R is the two-point compactification of the real line.

Theorem (DiPerna and Majda)

For bounded {uy}ren in LP([to, tf]; R™), 3 subsequence, ¢ € M ([to,ty])
and v(dult) € P(yR™) defined o-a.e. such that for any g € C([to,ts])
and any w € R:

i [ gptu®i = [ [ gtu@paolan

k—o00 to to ,YRm

where v() = w(@)(1 + |al?).

Example: to u € LP corresponds o = (1 + |u(t)[P) dt and v = 6, (dault).
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Relaxed OCP

J = min / Yty (t), u(t) dt

st.y= f(t? y(t)7 u(t))
u(t) € LP([to, t4];R™)
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Relaxed OCP

J = min / Yty (t), u(t) dt

st.y= f(t? y(t)7 u(t))
u(t) € LP([to, t4];R™)

Relaxed as:
tf —
J, = min / / Rty ) i)
oV to JyR™ 1 + ‘u|p

ft,y(t), u)

Srm 1+ alP
(o,v) € DMP([to,ts];R™)

sty = v(dalt)e,

See [Kruzik, Roubitek: '98].

Claeys, Henrion, KruZik SDP relaxations for unbounded control July 8, 2014 8/25



Occupation measures

Fix admissible (o, v, y):

<Y
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Occupation measures

Fix admissible (o, v, y):

<Y

B 5(73)(3) ift¢J
E(B|t) = { Zdt Ip(2(V))/d;d9  otherwise
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Occupation measures

Fix admissible (o, v, y):

<Y

B 5(73)(3) ift¢J
E(B|t) = { Zdt Ip(2(V))/d;d9  otherwise

p(dtdgda) := £(dy|t) v(dalt) o(dt)
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Weak ODE integration

Test 1 with v € C1(T x Y') along trajectories of admissible.
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Weak ODE integration

Test 1 with v € C1(T x Y') along trajectories of admissible.

Proposition

ov 1 ov f(t,g,u)

oirr T op it e

v(ty, z(t})) — vlto, 2(ty)) =
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The measure LP

Convex relaxation:
h(t,y,u)
Wa 1)
st. Yoe CHT xY):

(s, y(ty)) —olto, y(ty)) =

peEMHT XY x yR™).

Imeas = inf (
I

ov 1 ov f(t,g,u)
ot 1+ |alp Oy 1+ |ulp’

1)
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The measure LP

Convex relaxation:
h(t,y,u)
Wa 1)
st. Yoe CHT xY):

(s, y(ty)) —olto, y(ty)) =

peEMHT XY x yR™).

Imeas = inf (
I

ov 1 ov f(t,g,u)
ot 1+ |alp Oy 1+ |ulp’

1)

Compare this with [Vinter, Lewis: SICON '78] or [Vinter: SICON '93].
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e Moments: z, = (z

s )
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(%

e Moments: z, = (z

s )

20 21 22
. z1 z2 zZ3
@ Moment matrix: M(z) = |z 23 2
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e Moments: z, = (%, u)

20 21 22

. 21 z2 23
@ Moment matrix: M(z) = |z 23 2

o let X:={rxeR":gi(x) >0, i=1,..,m}

Theorem (Putinar)

p € MH(X) iff:
M(z) =0,  M(gixz)=0 Vi
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Semi-definite relaxations

Use only (2a)|q|<2r-

Claeys, Henrion, KruZik SDP relaxations for unbounded control July 8, 2014 16 / 25



Semi-definite relaxations

Use only (2a)|q|<2r-

Theorem (Lasserre)

J, 77;10777, T J, meas

Claeys, Henrion, KruZik SDP relaxations for unbounded control July 8, 2014 16 / 25



Semi-definite relaxations
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Theorem (Lasserre)

J, 77;10777, T J, meas
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Semi-definite relaxations

Use only (2a)|q|<2r-

Theorem (Lasserre)

J, 77;10777, T J, meas

Each relaxation is a standard semi-definite program. Can be solved by
dedicated software.

GloptiPoly [Henrion et al.]: toolbox for automatic generation of the SDP
relaxations from the measure LP.
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Reconstructing trajectories

Support of occupation measure = optimal trajectory(ies)/control(s).
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Reconstructing trajectories

Support of occupation measure = optimal trajectory(ies)/control(s).

[MC: CDC '14] Simple procedure (see also [Rubio: '86]):
@ Choose state/control to identify
@ Fix time and state/control grid X,
© Find best atomic approximation i € M™(X.) on the grid via
Af = min A
fis A
St |za — (2% @) < A
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Reconstructing trajectories

Support of occupation measure = optimal trajectory(ies)/control(s).

[MC: CDC '14] Simple procedure (see also [Rubio: '86]):
@ Choose state/control to identify
@ Fix time and state/control grid X,
© Find best atomic approximation i € M™(X.) on the grid via
Af = min A
fis A
St |za — (2% @) < A

© Approximate support = non-zero atoms.
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Example: concentration

inf / 2udt

s.t. ¥y =u,
y(0) =0, y(1)=1
u € L'([0,1]).

Claeys, Henrion, KruZik SDP relaxations for unbounded control July 8, 2014 20 / 25



Example: concentration

inf / Vudt o*(dt) = dt + 5% (dt)
_ - : 1
st y=u, v (daft) = 5o(du)_ !f t# 2
y(0)=0, y(1)=1 Oroo(du) ift=3.
u € L([0,1]). y*(t) = step,_1
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Example: concentration

1
1
inf / (t— 5)2u dt o*(dt) =dt+ 5% (dt)
0
toy= U if i
sit. = u, VH(dalt) = do(da) ' t# %a
y(0) =0, y(1)=1 §ino(da) ift=1.
u € Ll([O, 1]). y*(t) = stept:%

(Lz(tk))k ., = (2.0000, 1.0000, 0.5833, 0.3750, 0.2625, 0.1979, ...,
(S

((tk,a*>>k ., = (2.0000, 1.0000, 0.5833, 0.3750, 0.2625, 0.1979, ...).
(S
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Example: concentration

1
1
inf / (1~ 3)udt o (d) = dt 46, (d)
0

y(0)=0, y(1)=1 dpoo(du) ift=3.
u € L1([0,1]). y*(t) = step,_1

01 02 03 04 05 06 07 08 09 1
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Example: concentration and oscillations
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Example: concentration and oscillations

. 1,2 \
u V¥ (dalt) = %50(01@) + %5+oo(dﬂ)

y(t)=t
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Example: concentration and oscillations

y(0) =0 J (1)
u € LY([0,1]).

<Lz(tk)>k = (2.0026, 1.0026, 0.6692, 0.5026, 0.4026, 0.3359, ....),
(S

<<tk,a*>>k , = (2:0000, 1.0000, 0.6667, 0.5000, 0.4000, 0.3333, ...,
(S
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Example: concentration and oscillations

01 02 03 04 05
t
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Highlights of the method

@ Common framework for concentration and oscillation effects.
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Highlights of the method

Common framework for concentration and oscillation effects.

Global resolution, even for non-convex problems.

Easy handling of state constraints.

Straightforward to implement in GloptiPoly.

Currently n +m < 5, but SDP solvers are getting faster (Mosek) ...
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@ Presentation and paper version available at
http://mathclaeys.wordpress.com

@ Mini-course on polynomial optimization: D. Henrion (Th. 10:30,
A901), M. Putinar (Th. 11:30, A901), MC (Fr. 10:30, A901), M.
Korda (Fr. 11:30, A901).

@ This research was supported by the AVCR-CNRS project
“Semidefinite programming for nonconvex problems of calculus of
variations and optimal control”.
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