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Yesterday’s key points...

Global resolution.

Constraints easily captured.

Moments: a rich mathematical history.

Automated tools (GloptiPoly, . . . ).

Many different applications . . .
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... today’s key points.

. . . including control !

MC: open-loop optimal control.

Milan Korda: closed-loop.
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This talk

How to capture dynamics as linear constraints:

bounded control
switched systems
impulsive systems

Applications:

Medical imaging
Automotive

Inverse problem.
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The uncontrolled case

inf
x,T

∫ T

0
h(t, x(t)) dt

−→ 〈h, µ〉

s.t. ẋ = f(t, x(t))

−→ ?

x(0) ∈ X0

x(T ) ∈ XT

−→ µT ∈M+(XT )

x(t) ∈ X

Question

How to capture {x(t) admissible for ODE } ?
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The moment approach

Optimization
problem

LP on
measures

LP on
moments

Semi-definite
relaxation(s)
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Measures of Rn

Geometric perspective:

Definition (Finite Borel measures)

µ ∈M(X) if µ : B(X) 7→ R satisfies

µ(∅) = 0

µ(B1 ∪B2 ∪ . . .) = µ(B1) + µ(B2) + . . .

X
B1

B2

Functional analysis perspective:

Theorem (Riesz)

[C(X)]∗ “is”M(X) for compact X.
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Why measures?

Allows to lift the problem as a LP!

⇒ Existence of solution.
⇒ Local optima are global.

Example: yesterday’s polynomial optimization:
µ∗ = δx∗

(NB: lift 6= linearization)
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Occupation measures

Geometric:

T ×X(
t, x(t))

Functional analysis:

〈v(t, x), µ〉 =

∫ T

0
v
(
t, x(t)

)
dt
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Weak ODE integration

v(T, xT )− v(0, x0) =

∫ T

0
dv(t, x(t))

=

∫ T

0

∂v

∂t
(t, x(t)) +

∂v

∂x
(t, x(t)) f(t, x(t))

︸ ︷︷ ︸
:= F (t)

dt

= 〈∂v
∂t

(t, x) +
∂v

∂x
(t, x)f(t, x)

︸ ︷︷ ︸
:= F̃ (t, x)

, µ(dt,dx)〉
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Strong and weak sets

Define:

S := {(µ, µ0, µT ) are occupation measures}
and

W :=





(µ, µ0, µT ) :

〈v, µT 〉 − 〈v, µ0〉 = 〈∂v
∂t

+
∂v

∂x
f, µ〉, ∀v ∈ C([0, T ]×X),

〈1, µ0〉 = 1





Theorem (Vinter, Lewis: SICON’78)

co S = W
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Global optimal control

[Lasserre, Henrion, Prieur, Trélat: SICON’08]: use

Optimization
problem

LP on
measures

LP on
moments

Semi-definite
relaxation(s)
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Simplest example (1/3)

inf
x(t)

∫ 1

0
x2 dt

inf
(µ,µ0,µT )

〈x2, µ〉

s.t. ẋ = −x

s.t. 〈v(1,x),µT 〉−〈v(0,x),µ0〉=〈 ∂v∂t+
∂v
∂x

(−x),µ〉,∀v...

〈1, µ0〉 = 1

x(0) ∈ [4, 5]

−→ µ0 ∈M+([4, 5])

x(1) ∈ [2, 3]

µT ∈M+([2, 3])

x(t) ∈ [2, 5]

µ ∈M+([0, 1]× [2, 5])
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Simplest example (2/3)

Define yµαβ := 〈tα xβ, µ〉, yµ0β := 〈xβ, µ0〉, yµTβ := 〈xβ, µT 〉.

inf
(µ,µ0,µT )

〈x2, µ〉

inf
(yµ,yµ0 ,yµT )

yµ02

s.t. 〈v(1,x),µT 〉−〈v(0,x),µ0〉=

s.t. yµT0 −y
µ0
0 =0 [v = 1]

〈 ∂v
∂t

+ ∂v
∂x

(−x),µ〉, ∀v...

y
µT
0 =yµ10 [v = t]

y
µT
1 −y

µ0
0 =−yµ01 [v = x]

. . .

〈1, µ0〉 = 1

yµ00 = 1

µ0 ∈M+([4, 5])

M(gµ
0

i ∗ yµ
0
) � 0

µT ∈M+([2, 3])

M(gµ
T

i ∗ yµ
T

) � 0

µ ∈M+([0, 1]× [2, 5])

M(gµi ∗ yµ) � 0
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Simplest example (3/3)

First relaxation: J∗1 ≈ 8.7.

Second relaxation is (numerically) certified as unfeasible.

With XT = [1, 3]:

J∗1 = 6.4000

J∗2 = 6.9173

. . .

J∗ = 6.9173
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The dual view

Define L∗ : v 7→ L∗v := ∂v
∂t + ∂v

∂xf .

inf
µ,µ0,µT

〈h, µ〉

s.t. µT − µ0 = Lµ,
〈1, µ0〉 = 1

dual to

sup
r∈R,v∈C1

r

s.t. h+ L∗v ≥ 0 on K

v − r ≥ 0 on K0,

− v ≥ 0 on KT ,

≥ replaced by Putinar’s SOS certificates: dual to moment LP.

Certificates of given order: dual to moment relaxation of given order.
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What about control?

Same approach available for a wide class of control systems, provided one
agrees to work with relaxed control objects.

Overall strategy:

1 Relax control (Young, Fillipov,. . . )

2 Lift as measure LP (Vinter, Rubio, . . . )

3 Solve by moment relaxations (Lasserre, . . . )
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Bounded control (1/2)

Consider ẋ = f(t, x, u), u(t) ∈ U ⊂ Rm.

Definition ( Young measure )

{ω(du|t) ∈ P(U)}, [0, T ]-a.e

such that ∀v ∈ C(U), t→ 〈v, ω〉 is measurable on [0, T ] .

Example 1: For continuous u(t), pick ω = δu(t), so that
〈f(t, x(t), u), ω〉 = f(t, x(t), u(t))

Example 2: Consider a fast, evenly oscillating sequence in U = {−1, 1}.
Tends weakly to ω = 1

2δ−1 + 1
2δ1. For f = u, ẋ = 〈u, ω〉 = 0 exactly.
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2δ1. For f = u, ẋ = 〈u, ω〉 = 0 exactly.

Mathieu Claeys Polynomial optimization and control July 11, 2014 21 / 46



Bounded control (1/2)
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Bounded control (2/2)

Occupation measures with control:

[0, T ]×X × U(
t, x(t), u(t))

B

t = t1

t = t2

µ ∈M+([0, T ]×X × U) satisfy, ∀v ∈ C([0, T ]×X):

[v(·, x(·))]T0 = 〈∂v
∂t

+
∂v

∂x
f, µ〉

[Vinter and Lewis, SICON ’78]: No relaxation gap if relaxed control are
considered.
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Switched systems (1/2)

Switched systems:

ẋ = fσ(t)(t, x(t)), σ(t) ∈ {1, . . . ,m}

Recast as

ẋ =
m∑

j=1

fj (t, x(t)) uj(t)

u(t) ∈



u ∈ {0, 1}

m :
m∑

j=1

uj = 1



 .
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Switched systems (2/2)

Modal occupation measures:

µ([0, T ]×X)

(
t, x(t)

)

µ1([0, T ]×X)

⇒ +

µ2([0, T ]×X)

Proposition ( MC, Daafouz, Henrion: ’14 )

[v(·, x(·))]T0 = 〈∂v
∂t

+
∂v

∂x

m∑

j=1

fj uj , µ(dt, dx, du)〉

⇔

[v(·, x(·))]T0 =

m∑

j=1

〈∂v
∂t

+
∂v

∂x
fj , µj(dt, dx)〉
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Impulsive systems (1/2)

Consider, with unbounded u(t):

ẋ = f(t, x(t)) +G(t, x(t))u(t).

Control relaxations:

LTV systems: [Krasovskii ’56], [Neustadt,’64]

G(t) [Schmaedeke ’65]

G(t, x(t)) [Bressan and Rampazzo, ’88]

Graph completions:

x2

z (ϑ)

x1

x(t+i ) = z(1)

x(t−i ) = z(0)
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Impulsive systems (2/2)

Impulsive occupation measures:

x

t

x(t)

A×B

t1 t2 t3 t4

B

A

Satisfy:

[v(·, x(·))]T0 = 〈∂v
∂t

+
∂v

∂x
f, µ〉+ 〈∂v

∂x
G, ν〉

[MC: thesis ’13]
[MC, Arzelier, Henrion, Lasserre: CDC’13] LTV case
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Other systems . . .

Stochastic systems:

[Fleming and Vermes, SICON ’89], [Bhatt and Borkar, Ann. Prob.
’96], [Kurtz, Stockbridge: SICON ’98] for convex lift.

[Lasserre, “Moments, positive polynomials...”] for some applications
in finance via moment relaxations.

[MC and Carignano, soon] for system identification.

Concentration and oscillations (material science applications):

DiPerna-Majda measures as control relaxations.

[MC, Kruzik and Henrion, MTNS ’14] solve by moment programming.
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Example: contrast problem (1/4)
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Example: contrast problem (2/4)

[Bonnard, MC, Cots, Martinon: Acta Math. App. ’14]

inf − x23(T )− x24(T )

s.t. ẋ1 = −Γ1x1 − x2 u
ẋ2 = γ1(1− x2) + x1 u

ẋ3 = −Γ2x3 − x4 u
ẋ4 = γ2(1− x4) + x3 u,
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Example: contrast problem (3/4)

1 1.5 2

0.68

0.7

0.72

0.74

0.76

0.78

0.8

t
f
/T

min

√
x
2 3
(t

f
)
+
x
2 4
(t

f
)

Measured control Control measure
r

√
−J rM tr

√
−J rM tr

1 1.000 1 0.9827 0.6
2 0.8984 2 0.8756 1.0
3 0.8707 9 0.8599 6.6
4 0.8256 265 0.7973 113
5 0.7881 5147 0.7891 1298
6 0.7867 50027 0.7871 10831
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Example: contrast problem (4/4)

Complexity as r →∞ of [Lasserre et al. ’08]: O(r
9
2
(1+n+m))

Complexity as r →∞ of [MC et al. ’14]: O(m
3
2 r

9
2
(1+n))

Mathieu Claeys Polynomial optimization and control July 11, 2014 32 / 46



Example: contrast problem (4/4)

Complexity as r →∞ of [Lasserre et al. ’08]: O(r
9
2
(1+n+m))

Complexity as r →∞ of [MC et al. ’14]: O(m
3
2 r

9
2
(1+n))

Mathieu Claeys Polynomial optimization and control July 11, 2014 32 / 46



Example: contrast problem (4/4)

Complexity as r →∞ of [Lasserre et al. ’08]: O(r
9
2
(1+n+m))

Complexity as r →∞ of [MC et al. ’14]: O(m
3
2 r

9
2
(1+n))

−2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

10

12

log(t
r
), C. et al.

lo
g(

t r),
 L

as
se

rr
e 

et
 a

l.

 

 

 
y = 1.3*x − 1.2

Mathieu Claeys Polynomial optimization and control July 11, 2014 32 / 46



Example: electric car (1/2)

[ Sager, MC, Messine: JOGO’14]

inf
u(t)

∫ 10

0

(
Valim x0u+Rbat x

2
0

)
dt

s.t. ẋ0 = −Rm
Lm

x0 −
Km

Lm
x1 +

Valim

Lm
u,

ẋ1 =
Km

J
x0 −

rMgKf

JKr
− r3ρSCx

2JK3
r

x21,

ẋ2 =
r

Kr
x1,

|x0(t)| ≤ Imax

u(t) ∈ {−1, + 1},

x2(10)− x2(0) = 100.
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Example: electric car (2/2)

r Measured control Control measure

1 0.5 0.5
2 1.0 1.2
3 4.7 3.0
4 12 3.5
5 63 7.8
6 997 23
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The moment approach

Optimization
problem

LP on
measures

LP on
moments

Semi-definite
relaxation(s)

Mathieu Claeys Polynomial optimization and control July 11, 2014 36 / 46



Inverse problem

Given {yα}|α|≤2r and dual SOS variables, can we reconstruct
(u∗(t), x∗(t))?
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Method 1: duality

Dual object V ∈ R2r[t, x] is HJB subsolution:

h− ∂V

∂t
− ∂V

∂x
f ≥ 0 (1)

Equality holds in (1) “at” optimum.

Procedure:

1 Fix time grid, fix state-control grid

2 For each ti, find (x∗j , u
∗
j ) minimizing LHS of (1).
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Method 2: polynomial density

[Henrion, Lasserre, Mevissen. App. Math. Optim. ’13].

Assume yk0...010...0 = 〈tk z(t), λ〉

Then polynomial z̃(t) approaching z(t) in the mean squared sense is found
by solving a simple linear system.
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Method 3: atomic approximations

[MC, CDC ’14]

Support of occupation measure = optimal trajectory(ies)/control(s).

Procedure (see also [Rubio 86]):

1 Choose state/control to identify

2 Fix time and state/control grid Zε
3 Find best atomic approximation µ̃ ∈M+(Zε) on the grid via

λ∗ε = min
µ̃,λ

λ

s.t. |yα − 〈zα, µ̃〉| ≤ λ

4 Approximate support = non-zero atoms.
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Example 1
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Example 2: invariant measure

Invariant measure:

∃µ? s.t. ∀v ∈ R[x] : 〈∂v
∂x
f, µ〉 = 0,

〈1, µ〉 = 1,

µ ∈M+(X),

Van der Pol oscillator:

ẋ1 = x2

ẋ2 = −x1 + (1− x21)x2.
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The moment approach

Optimization
problem

LP
on measures

LP
on moments

Semi-definite
relaxation(s)
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Highlights

Global resolution of optimal control problems.

Vast classes of systems covered.

Extends to ·· ,
√·, min(·, ·), piecewise, . . .

State constraints easily handled.

Can certify infeasibility.

Straightforward implementation with GloptiPoly.

Unstructured problems: n+m ≤ 6, but SDP solvers are getting fast
(Mosek) . . .
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Thanks!

Presentation available at
http://mathclaeys.wordpress.com
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