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Yesterday's key points...

@ Global resolution.
@ Constraints easily captured.

@ Moments: a rich mathematical history.

Automated tools (GloptiPoly, ...).

Many different applications . ..
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... today’s key points.

@ ...including control !
@ MC: open-loop optimal control.

@ Milan Korda: closed-loop.
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This talk

@ How to capture dynamics as linear constraints:
e bounded control
e switched systems
e impulsive systems
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This talk

@ How to capture dynamics as linear constraints:

e bounded control
e switched systems
e impulsive systems

@ Applications:
e Medical imaging
e Automotive

@ Inverse problem.

Mathieu Claeys Polynomial optimization and control July 11, 2014 5/ 46



Table of contents

@ Occupation measures
© Controlled systems
© Examples

@ Inverse problem

© Perspectives

Mathieu Claeys Polynomial optimization and control July 11, 2014 6 /46



The uncontrolled case

z,T

stt. & = f(t,x(t))
z(0) € Xo
z(T) € Xr
z(t) € X

T
inf /O h(t,2(t)) dt
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The uncontrolled case

z,T

stt. & = f(t,x(t))
z(0) € Xo
z(T) € Xr
z(t) € X

T
inf /O Wt 2(®) dt —> (b, )
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The uncontrolled case

z,T

stt. & = f(t,x(t))
z(0) € Xo
z(T) € Xr — ur € MT(X7)
z(t) € X

T
inf /O Wt 2(®) dt —> (b, )
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The uncontrolled case

T
inf /O Wt 2(®) dt —> (b, )

z,T

stz = f(t,x(t)) —7
z(0) € Xo
z(T) € Xr — ur € MT(X7)
z(t) € X

How to capture {z(t) admissible for ODE } 7

Mathieu Claeys Polynomial optimization and control July 11, 2014 7 /46



The moment approach

Optimization
problem

LP on
measures
LP on
moments

Semi-definite
relaxation(s)
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Measures of R"

o Geometric perspective:

Definition (Finite Borel measures) X
p € M(X) if p: B(X) — R satisfies By
o u(0) =0

o W(B1UByU...) = u(By) + u(Ba) + ... =
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Measures of R"

o Geometric perspective:

Definition (Finite Borel measures) X
p € M(X) if p: B(X) — R satisfies By
o u(0) =0

B,
o u(B1UByU...)=pu(B;)+ puBs2)+...

@ Functional analysis perspective:

Theorem (Riesz)

[C(X)]* “is” M(X) for compact X.
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measures?

@ Allows to /ift the problem as a LP!
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o Example: yesterday's polynomial optimization:
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@ Allows to /ift the problem as a LP!
= Existence of solution.
= Local optima are global.

o Example: yesterday's polynomial optimization:

e (NB: lift # linearization)
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Occupation measures

o Geometric:

TxX
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Occupation measures

o Geometric:

TxX

@ Functional analysis:
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Weak ODE integration

T
U(T,:UT)—v(o,xo):/O dv(t, (1))
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Weak ODE integration

T
U(T,:UT)—v(o,xo):/O dv(t, (1))

= P2+ L) (0, 2), e, )
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Weak ODE integration
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Strong and weak sets

Define:
& := {(u, po, p) are occupation measures}
and
(ks MOaHT) :
W= 4 (v pr) — (v, po) = <g§ f, w, Yo ec([0,T] x X),
(17M0> =1
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Strong and weak sets

Define:
& := {(u, po, p) are occupation measures}
and
(ks MOaMT) :
W= 4 (v pr) — (v, po) = <g§ f, w, Yo ec([0,T] x X),
(17M0> =1

Theorem (Vinter, Lewis: SICON'78)

coS =W

Mathieu Claeys Polynomial optimization and control July 11, 2014 13 / 46



Global optimal control

[Lasserre, Henrion, Prieur, Trélat: SICON’08]: use
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Global optimal control

[Lasserre, Henrion, Prieur, Trélat: SICON’08]: use

Optimization
problem

LP on
measures
LP on
moments

Semi-definite
relaxation(s)
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Simplest example (1/3)

1
inf / 22 dt
z(t) Jo

st.z=—x

2(0) € [4, 5]
z(1) € [2, 3]
2(t) € [2,5]
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Simplest example (1/3)

1
/ 22 dt inf
0 (ps 20, 07)

st.z=—x s.t.

2(0) € [4,5) —
z(1) € [2, 3]
2(t) € [2,5]
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Simplest example (1/3)

1
inf /1‘2 dt inf (2%, p)
=(t) Jo (#sht0,10T)
st.z=—x s.t.

2(0) € [4,5) —
z(1) € [2, 3]
2(t) € [2,5]
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Simplest example (1/3)

1
inf / 2 dt inf (2%, p)
=(t) Jo (#sht0,10T)
st =—ux s.t. (v(La)ur) = (w(0.2),p0)=(F7+ 52 (—z) 1) Vo...
<17/J/0> =1

2(0) € [4,5) —
z(1) € [2, 3]
2(t) € [2,5]
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Simplest example (1/3)

1
inf /1‘2 dt inf (2%, p)
=(t) Jo (#sht0,10T)
st.z=—x St (u(1,),ur) — (V(0,2) 10) =( T4+ G2 (—),1) V...
<17/J/0> =1

l‘(O) S [47 5] — Mo € M+([47 5])

v(1) € 2,3) wr € M*(2,3)

x(t) € [2,5] pe MF([0,1] x [2,5])
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Simplest example (2/3)

Define  yhg:=(t"2” p), 5" = (2", po), " = (& pr).
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Simplest example (2/3)

Define  yhg:=(t"2” p), 5" = (2", po), " = (& pr).
inf (2% p)
(11,400, 147)

s.t. <’U(17£)?H’T>_<U(Ovl)7ﬂ0>:

(Zo+9Y (—z),u), Yo...

(17M0> =1

Ho € M+([47 5])

pr € M*((2,3])
€ MT([0,1] x [2,5])
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Simplest example (2/3)

Define  yhg:=(t"2” p), 5" = (2", po), " = (& pr).
inf (22,1 inf
(psp0,50) ( ) (y+yHo,yiT)
s.t. (v(1,z),ur)—(v(0,z),u0)= s.t.

(Zo+9% (—z),u), Yo...

(17M0> =1

Ho € M+([47 5])

pr € M*((2,3])
€ MT([0,1] x [2,5])
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Simplest example (2/3)

Define  yhg:=(t"2” p), 5" = (2", po), " = (& pr).

inf (22, inf "
(pott0,107) @ (y#,yHo yHT) Y02
s.t. (v(1,2),ur)—(v(0,2),10)= s.t.

(Zo+9% (—z),u), Yo...

(17M0> =1

Ho € M+([47 5])

pr € M*((2,3])
€ MT([0,1] x [2,5])

Mathieu Claeys Polynomial optimization and control July 11, 2014



Simplest example (2/3)

Define  yhg:=(t"2” p), 5" = (2", po), " = (& pr).
inf (2% p)
(11,400, 147)

inf
(y#,yHo,yiT) Y02

s.t. <’U(17£)?H’T>_<U(Ovl)7ﬂ0>:

s.t. ygT—yg():O [U =1
(G452 (—2).m), Vo... vo T =uko [v
T =6 =—vtn [v = 2]
_ MO __
(17M0> =1 Y = 1

Mo € M+([47 5])
pr € M*((2,3])
€ MT([0,1] x [2,5])
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Simplest example (2/3)

Define  yhg:=(t"2” p), 5" = (2", po), " = (& pr).
inf (2% p)
(11,400, 147)

inf
(y#,yHo,yiT) Y02

s.t. <’U(17£)?H’T>_<U(Ovl)7ﬂ0>:

s.t. ygT—yg():O [U =1
(Zo+9% (—z),u), Yo... yh T =yt [v
T =6 =—vtn [v = 2]
(1, ) =1 yp' =1
0 0
po € M™([4,5]) M(gt" «y"") =0
pr € MH(12,3)) M(g!" xy") = 0
pe MH([0,1] x [2,5) ’

M(g; *y") = 0
Mathieu Claeys

Polynomial optimization and control

July 11, 2014



Simplest example (3/

o First relaxation: Jj" ~ 8.7.
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Simplest example (3

o First relaxation: Jj" ~ 8.7.

@ Second relaxation is (numerically) certified as unfeasible.
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Simplest example (3/3)

o First relaxation: J; ~ 8.7.
@ Second relaxation is (numerically) certified as unfeasible.

e With X7 =1, 3]:

J; = 6.4000
J; =6.9173
J* =6.9173
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The dual view

; . ) o)
Define £* : v — L™ := G + 52 f.

sup T
inf  (h, u) reRweC!
Sy t.h+Lv>0o0on K
s.t. pr — po = L, dual to s-t. =z
(1, o) = 1 v—7r2>0on Ky,
s O/ —

—v>0on Krp,
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The dual view

; . ) o)
Define £* : v — L™ := G + 52 f.

sup T
inf  (h, u) reRweC!
Sy t.h+Lv>0o0on K
s.t. pr — po = L, dual to s-t. =z
(1, o) = 1 v—7r2>0on Ky,
s O/ —

—v>0on Krp,

> replaced by Putinar’'s SOS certificates: dual to moment LP.

Certificates of given order: dual to moment relaxation of given order.
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What about control?

Same approach available for a wide class of control systems, provided one
agrees to work with relaxed control objects.
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What about control?

Same approach available for a wide class of control systems, provided one
agrees to work with relaxed control objects.

Overall strategy:
@ Relax control (Young, Fillipov,...)
@ Lift as measure LP (Vinter, Rubio, ...)

@ Solve by moment relaxations (Lasserre, .. .)
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Bounded control (1/2)

Consider & = f(t,x,u), u(t) € U C R™.
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Bounded control (1/2)

Consider & = f(t,x,u), u(t) € U C R™.

Definition ( Young measure )

{w(duft) e P(U)}, [0,T]-a.e
such that Vv € C(U), t — (v,w) is measurable on [0,7]] .
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Bounded control (1/2)

Consider & = f(t,x,u), u(t) € U C R™.

Definition ( Young measure )

{w(duft) e P(U)}, [0,T]-a.e
such that Vv € C(U), t — (v,w) is measurable on [0,7]] .

Example 1: For continuous u(t), pick w = dy), so that

(Ft,2(t),w),w) = f(t,2(1),u(t))
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Bounded control (1/2)

Consider & = f(t,x,u), u(t) € U C R™.

Definition ( Young measure )

{w(dult) € P(U)}, [0,T]-a.e

such that Vv € C(U), t — (v,w) is measurable on [0,7]] .

Example 1: For continuous u(t), pick w = dy), so that

(Ft,2(t),w),w) = f(t,2(1),u(t))

Example 2: Consider a fast, evenly oscillating sequence in U = {—1,1}.
Tends weakly to w = %5,1 + %61. For f = u, & = (u,w) = 0 exactly.
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Bounded control (2/2)

Occupation measures with control:
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Bounded control (2/2)

Occupation measures with control:

p e MT([0,T] x X x U) satisfy, Vv € C([0,T] x X):

o2 (N = (oot 9 f, )
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Bounded control (2/2)

Occupation measures with control:

p e MT([0,T] x X x U) satisfy, Vv € C([0,T] x X):

T 8'1)

oCa O = (5o + 5ofum)

[Vinter and Lewis, SICON '78]: No relaxation gap if relaxed control are
considered.
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Switched systems (1/2)

Switched systems:

b= fLota), o) e{l,...,m}
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Switched systems (1/2)

Switched systems:

b= fLota), o) e{l,...,m}

Recast as

&= Z fi (2 (t)) u;(t)

u(t) e ue{0,1}": Zgj =1
j=1

Mathieu Claeys Polynomial optimization and control July 11, 2014



Switched systems (2/2)

Modal occupation measures:

(t,2(t)) N\
= + N
/\ —

([0, T] x X) ([0, T] x X) 12([0, 7] x X)
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Switched systems (2/2)

Modal occupation measures:

(t2(t)) PN
= + N
/\ —

([0, T] x X) ([0, T] x X) p2([0, T x X)

Proposition ( MC, Daafouz, Henrion: '14)

oD = (o + ZfJuJ, (dt, dz, du))
=

o 2O = Yoo+ 9255, g, da)

=1

i
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Impulsive systems (1/2)

Consider, with unbounded u(t):

&= f(t,z(t)) + G(t, z(t)) u(t).
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Impulsive systems (1/2)

Consider, with unbounded u(t):

&= f(t,z(t)) + G(t, z(t)) u(t).

Control relaxations:
@ LTV systems: [Krasovskii '56], [Neustadt, 64]
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Impulsive systems (1/2)

Consider, with unbounded u(t):
&= f(t,x(t) + Gt x(t) ult).
Control relaxations:

@ LTV systems: [Krasovskii '56], [Neustadt, 64]
o G(t) [Schmaedeke '65]
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Impulsive systems (1/2)

Consider, with unbounded u(t):

&= f(t,z(t)) + G(t, z(t)) u(t).

Control relaxations:
@ LTV systems: [Krasovskii '56], [Neustadt, 64]
o G(t) [Schmaedeke '65]
e G(t,x(t)) [Bressan and Rampazzo, '88]
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Impulsive systems (1/2)

Consider, with unbounded u(t):

&= f(t,z(t)) + G(t, z(t)) u(t).

Control relaxations:
@ LTV systems: [Krasovskii '56], [Neustadt, 64]
o G(t) [Schmaedeke '65]
e G(t,x(t)) [Bressan and Rampazzo, '88]

Graph completions:
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Impulsive systems (2/2)

Impulsive occupation measures:
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Impulsive systems (2/2)

Impulsive occupation measures:

Satisfy:
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Impulsive systems (2/2)

Impulsive occupation measures:

Satisfy:

[MC: thesis '13]
[MC, Arzelier, Henrion, Lasserre: CDC'13] LTV case
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Other systems ...

Stochastic systems:

@ [Fleming and Vermes, SICON '89], [Bhatt and Borkar, Ann. Prob.
'96], [Kurtz, Stockbridge: SICON '98] for convex lift.

o [Lasserre, "Moments, positive polynomials..."] for some applications
in finance via moment relaxations.

e [MC and Carignano, soon] for system identification.
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Other systems ...

Stochastic systems:

@ [Fleming and Vermes, SICON '89], [Bhatt and Borkar, Ann. Prob.
'96], [Kurtz, Stockbridge: SICON '98] for convex lift.

o [Lasserre, "Moments, positive polynomials..."] for some applications
in finance via moment relaxations.

e [MC and Carignano, soon] for system identification.

Concentration and oscillations (material science applications):
@ DiPerna-Majda measures as control relaxations.

e [MC, Kruzik and Henrion, MTNS '14] solve by moment programming.
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Example: contrast problem (1/4)
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Example: contrast problem (2/4)

e [Bonnard, MC, Cots, Martinon: Acta Math. App. '14]
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Example: contrast problem (2/4)

e [Bonnard, MC, Cots, Martinon: Acta Math. App. '14]

1 1
0.5 s 0.5
S0 &0
9 9 -05 o -05
inf —23(T) — 23(T) R e
. X, X
st.x1 = -T'1z1 — 221
. S
o =v1(1—m2) + 210
23 = —Iox3 —x4u S |
T4 = ’}/2(1 — 1‘4) + z3u,
o 02 04 0.6 038 1
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Example: contrast problem (3/4)
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Example: contrast problem (3/4)

Mathieu Claeys

Polynomial optimization and control

Measured control Control measure
ol =T |t V=I5 |t
1 1.000 1 0.9827 0.6
2 0.8984 2 0.8756 1.0
3 0.8707 9 0.8599 6.6
4 0.8256 265 0.7973 113
5 0.7881 5147 0.7891 1298
6 0.7867 | 50027 0.7871 | 10831

July 11, 2014
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Example: contrast problem (4/4)

Complexity as r — oo of [Lasserre et al. '08]: (’)(r%(H”er))
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Example: contrast problem (4/4)

Complexity as r — oo of [Lasserre et al. '08]: (’)(r%(H”er))

Complexity as r — oo of [MC et al. '14]: O(m%r%(Hn))
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Example: contrast problem (4/4)

Complexity as 7 — oo of [Lasserre et al. '08]: O(r%(1+n+m))

Complexity as r — oo of [MC et al. '14]: (’)(m%r%(Hn))

\ng(tr)‘ Lasserre et al

4 6 8 10
log(t), C. etal.

July 11, 2014 32/ 46
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Example: electric car (1/2)

o [ Sager, MC, Messine: JOGO'14]

10

inf (Vatim Tou + Rpqr 23) dt

u(t) Jo
. R Km Vulim

todg = ——Txp — —=

s.t. To T ) Tom 1 + I u,
. Km rMgKy r3pSCz 9
= —T0— ———— — ——=— 7,

J JK, 2JK3

. r
T2 = KfofUly

|IO(t)| S Imax
u(t) € {-1, +1},

22(10) — 22(0) = 100.
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Example: electric car (1/2)

o [ Sager, MC, Messine: JOGO'14]

Primal states

10
inf (Vatim Tou + Rpqr 23) dt 500 .
u(t) Jo
: R Km Vulim 400 - 4
st.dp=———z0— ——x1+ , e
Lm ' Lm Lom o | - |
r" '!,\
. Km rMgK;  13pSCy = .
Bl = @0 = o = o T gy | -
J JKr 2J K3 -
. r -
T2 = —T1, 0 T -
: KT R P R ———
Current zo(-)
|20 ()] < Imax 00 L Angular velocity z1(-) ]
Position () -
u(t) € {-1, +1}, Objective 23(-)/100 ==
-200 L L 1 L
0 2 4 6 8 10
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Example: electric car (2/2)

r  Measured control Control measure
1 0.5 0.5
2 1.0 1.2
3 4.7 3.0
4 12 3.5
5 63 7.8
6 997 23
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The moment approach

Optimization
problem

LP on
measures
LP on
moments

Semi-definite
relaxation(s)
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Inverse problem

Given {ya }ja|<2- and dual SOS variables, can we reconstruct

(u(2), 2" (1))?
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Method 1: duality

Dual object V' € Ry, [t, z] is HIB subsolution:

ov. oV
_ % s 1
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Method 1: duality

Dual object V' € Ry, [t, z] is HIB subsolution:

ov. oV
_ % s 1

Equality holds in (1) “at” optimum.

Procedure:
@ Fix time grid, fix state-control grid

@ For each ¢;, find (2}, u}) minimizing LHS of (1).
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Method 2: polynomial density

[Henrion, Lasserre, Mevissen. App. Math. Optim. '13].
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Method 2: polynomial density

[Henrion, Lasserre, Mevissen. App. Math. Optim. '13].

Assume yxo._o010..0 = (tF 2(t), \)

Then polynomial Z(t) approaching z(t) in the mean squared sense is found
by solving a simple linear system.
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Method 3: atomic approximations

[MC, CDC '14]

Support of occupation measure = optimal trajectory(ies)/control(s).
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Method 3: atomic approximations

[MC, CDC '14]
Support of occupation measure = optimal trajectory(ies)/control(s).

Procedure (see also [Rubio 86]):
© Choose state/control to identify
@ Fix time and state/control grid Z.
© Find best atomic approximation i € M™(Z.) on the grid via
AL = r;n){l A
St [y — (2, )] < A
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Method 3: atomic approximations

[MC, CDC '14]
Support of occupation measure = optimal trajectory(ies)/control(s).

Procedure (see also [Rubio 86]):
© Choose state/control to identify
@ Fix time and state/control grid Z.
© Find best atomic approximation i € M™(Z.) on the grid via
AL = I;Lllil A
st |ya — (2% W) < A

© Approximate support = non-zero atoms.
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Example 1

grid el Bt
—— optimal ,,'
0 |- - - density : |
3 + duality |/
o atomic Ir'
|
3
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Example 2: invariant measure

Invariant measure:

Ju? s.t. Yo € Rlz] : <ng’ ) =0,
(L =1,
pe M*(X),
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Example 2: invariant measure

Invariant measure:

Ju? s.t. Yo € Rlz] : <ng’ ) =0,
(L) =1,
pe M*(X),
Van der Pol oscillator:
T1 = T9
By = —x1 + (1 — 23)as.
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Example 2: invariant measure

Invariant measure:

Ju? s.t. Yo € Rlz] : <ng’ ) =0,
(L) =1,
pe M*(X),
Van der Pol oscillator: S i
T1 = T9
By = —x1 + (1 — 23)as. ) .
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The moment approach

Optimization
problem

LP
on measures

LP
on moments

Semi-definite
relaxation(s)
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Presentation available at
http://mathclaeys.wordpress.com
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