Polynomial optimization and control Mini-course 3/4: Applications to optimal control

Didier Henrion, Mihai Putinar, Milan Korda, Mathieu Claeys

July 11, 2014

Optimization

 problem
Recap

Recap

Recap

Yesterday's key points...

- Global resolution.

Yesterday's key points...

- Global resolution.
- Constraints easily captured.

Yesterday's key points...

- Global resolution.
- Constraints easily captured.
- Moments: a rich mathematical history.

Yesterday's key points...

- Global resolution.
- Constraints easily captured.
- Moments: a rich mathematical history.
- Automated tools (GloptiPoly, ...).

Yesterday's key points...

- Global resolution.
- Constraints easily captured.
- Moments: a rich mathematical history.
- Automated tools (GloptiPoly, ...).
- Many different applications ...

today's key points.

- ... including control !
- MC: open-loop optimal control.
- Milan Korda: closed-loop.

This talk

- How to capture dynamics as linear constraints:
- bounded control
- switched systems
- impulsive systems

This talk

- How to capture dynamics as linear constraints:
- bounded control
- switched systems
- impulsive systems
- Applications:
- Medical imaging
- Automotive

This talk

- How to capture dynamics as linear constraints:
- bounded control
- switched systems
- impulsive systems
- Applications:
- Medical imaging
- Automotive
- Inverse problem.

Table of contents

(1) Occupation measures
(2) Controlled systems
(3) Examples
(4) Inverse problem
(5) Perspectives

The uncontrolled case

$$
\begin{gathered}
\inf _{x, T} \int_{0}^{T} h(t, x(t)) \mathrm{d} t \\
\text { s.t. } \dot{x}=f(t, x(t)) \\
x(0) \in X_{0} \\
x(T) \in X_{T} \\
x(t) \in X
\end{gathered}
$$

The uncontrolled case

$$
\begin{aligned}
& \inf _{x, T} \int_{0}^{T} h(t, x(t)) \mathrm{d} t \longrightarrow\langle h, \mu\rangle \\
& \text { s.t. } \dot{x}=f(t, x(t)) \\
& \quad x(0) \in X_{0} \\
& \quad x(T) \in X_{T} \\
& \quad x(t) \in X
\end{aligned}
$$

The uncontrolled case

$$
\begin{array}{ll}
\inf _{x, T} \int_{0}^{T} h(t, x(t)) \mathrm{d} t & \longrightarrow\langle h, \mu\rangle \\
\text { s.t. } \dot{x}=f(t, x(t)) & \\
\quad x(0) \in X_{0} & \\
\quad x(T) \in X_{T} \quad \longrightarrow \mu_{T} \in \mathcal{M}^{+}\left(X_{T}\right) \\
& x(t) \in X
\end{array}
$$

The uncontrolled case

$$
\begin{array}{ll}
\inf _{x, T} \int_{0}^{T} h(t, x(t)) \mathrm{d} t & \longrightarrow\langle h, \mu\rangle \\
\text { s.t. } & \dot{x}=f(t, x(t)) \\
& \longrightarrow ? \\
& x(0) \in X_{0} \\
& x(T) \in X_{T} \\
& \\
& x(t) \in X
\end{array}
$$

Question

How to capture $\{x(t)$ admissible for $O D E\}$?

The moment approach

Measures of \mathbb{R}^{n}

- Geometric perspective:

Definition (Finite Borel measures)

$\mu \in \mathcal{M}(\mathbf{X})$ if $\mu: \mathscr{B}(\mathbf{X}) \mapsto \mathbb{R}$ satisfies

- $\mu(\emptyset)=0$
- $\mu\left(\mathbf{B}_{1} \cup \mathbf{B}_{2} \cup \ldots\right)=\mu\left(\mathbf{B}_{1}\right)+\mu\left(\mathbf{B}_{2}\right)+\ldots$

Measures of \mathbb{R}^{n}

- Geometric perspective:

Definition (Finite Borel measures)

$\mu \in \mathcal{M}(\mathbf{X})$ if $\mu: \mathscr{B}(\mathbf{X}) \mapsto \mathbb{R}$ satisfies
B $_{1}$

- $\mu(\emptyset)=0$
- $\mu\left(\mathbf{B}_{1} \cup \mathbf{B}_{2} \cup \ldots\right)=\mu\left(\mathbf{B}_{1}\right)+\mu\left(\mathbf{B}_{2}\right)+\ldots$
- Functional analysis perspective:

```
Theorem (Riesz)
\([C(\mathbf{X})]^{*}\) "is" \(\mathcal{M}(\mathbf{X})\) for compact \(\mathbf{X}\).
```


Why measures?

- Allows to lift the problem as a LP!

Why measures?

- Allows to lift the problem as a LP! \Rightarrow Existence of solution.

Why measures?

- Allows to lift the problem as a LP! \Rightarrow Existence of solution.
\Rightarrow Local optima are global.

Why measures?

- Allows to lift the problem as a LP! \Rightarrow Existence of solution. \Rightarrow Local optima are global.
- Example: yesterday's polynomial optimization:

Why measures?

- Allows to lift the problem as a LP! \Rightarrow Existence of solution. \Rightarrow Local optima are global.
- Example: yesterday's polynomial optimization:

- (NB: lift \neq linearization $)$

Occupation measures

- Geometric:

Occupation measures

- Geometric:

$$
T \times X
$$

Occupation measures

- Geometric:

$$
T \times X
$$

- Functional analysis:

$$
\langle v(t, \underline{x}), \mu\rangle=\int_{0}^{T} v(t, x(t)) \mathrm{d} t
$$

Weak ODE integration

$$
v\left(T, x_{T}\right)-v\left(0, x_{0}\right)=\int_{0}^{T} \mathrm{~d} v(t, x(t))
$$

Weak ODE integration

$$
\begin{aligned}
v\left(T, x_{T}\right)-v\left(0, x_{0}\right) & =\int_{0}^{T} \mathrm{~d} v(t, x(t)) \\
& =\int_{0}^{T} \underbrace{\frac{\partial v}{\partial t}(t, x(t))+\frac{\partial v}{\partial x}(t, x(t)) f(t, x(t))}_{:=F(t)} \mathrm{d} t
\end{aligned}
$$

Weak ODE integration

$$
\begin{aligned}
v\left(T, x_{T}\right)-v\left(0, x_{0}\right) & =\int_{0}^{T} \mathrm{~d} v(t, x(t)) \\
& =\int_{0}^{\int_{:=F}^{T} \underbrace{\frac{\partial v}{\partial t}(t, x(t))+\frac{\partial v}{\partial x}(t, x(t)) f(t, x(t))}_{:=\tilde{F}(t)} \mathrm{d} t} \\
& =\langle\underbrace{\frac{\partial v}{\partial t}(t, \underline{x})+\frac{\partial v}{\partial x}(t, \underline{x}) f(t, \underline{x})}, \mu(\mathrm{d} t, \mathrm{~d} \underline{x})\rangle
\end{aligned}
$$

Weak ODE integration

$$
\begin{aligned}
\left\langle v, \mu_{T}\right\rangle-\left\langle v, \mu_{0}\right\rangle & =\int_{0}^{T} \mathrm{~d} v(t, x(t)) \\
& =\int_{0}^{\int_{:=F(t)}^{\frac{\partial v}{\partial t}(t, x(t))+\frac{\partial v}{\partial x}(t, x(t)) f(t, x(t))} \mathrm{d} t} \\
& =\langle\underbrace{\frac{\partial v}{\partial t}(t, \underline{x})+\frac{\partial v}{\partial x}(t, \underline{x}) f(t, \underline{x})}_{:=\tilde{F}(t, \underline{x})}, \mu(\mathrm{d} t, \mathrm{~d} \underline{x})\rangle
\end{aligned}
$$

Strong and weak sets

Define:

$$
\mathscr{S}:=\left\{\left(\mu, \mu_{0}, \mu_{T}\right) \text { are occupation measures }\right\}
$$

and

$$
\mathscr{W}:=\left\{\begin{array}{c}
\left(\mu, \mu_{0}, \mu_{T}\right): \\
\left.\left\langle v, \mu_{T}\right\rangle-\left\langle v, \mu_{0}\right\rangle=\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f, \mu\right\rangle, \quad \forall v \in \mathcal{C}([0, T] \times X),\right\} \\
\left\langle 1, \mu_{0}\right\rangle=1
\end{array}\right.
$$

Strong and weak sets

Define:

$$
\mathscr{S}:=\left\{\left(\mu, \mu_{0}, \mu_{T}\right) \text { are occupation measures }\right\}
$$

and

$$
\mathscr{W}:=\left\{\begin{array}{c}
\left(\mu, \mu_{0}, \mu_{T}\right): \\
\left.\left\langle v, \mu_{T}\right\rangle-\left\langle v, \mu_{0}\right\rangle=\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f, \mu\right\rangle, \quad \forall v \in \mathcal{C}([0, T] \times X),\right\} \\
\left\langle 1, \mu_{0}\right\rangle=1
\end{array}\right.
$$

Theorem (Vinter, Lewis: SICON'78)

$$
\operatorname{co} \mathscr{S}=\mathscr{W}
$$

Global optimal control

Global optimal control

Simplest example ($1 / 3$)

$\inf _{x(t)} \int_{0}^{1} x^{2} \mathrm{~d} t$
s.t. $\dot{x}=-x$

$$
\begin{aligned}
& x(0) \in[4,5] \\
& x(1) \in[2,3] \\
& x(t) \in[2,5]
\end{aligned}
$$

Simplest example ($1 / 3$)

$$
\begin{array}{lr}
\inf _{x(t)} \int_{0}^{1} x^{2} \mathrm{~d} t & \inf _{\left(\mu, \mu_{0}, \mu_{T}\right)} \\
\text { s.t. } & \\
& \\
& \\
& \\
& \text { s.t. } \\
& x(0) \in[4,5] \\
& x(t) \in[2,3]
\end{array}
$$

Simplest example ($1 / 3$)

$$
\begin{array}{lc}
\inf _{x(t)} \int_{0}^{1} x^{2} \mathrm{~d} t & \inf _{\left(\mu, \mu_{0}, \mu_{T}\right)}\left\langle\underline{x}^{2}, \mu\right\rangle \\
\text { s.t. } \dot{x}=-x & \text { s.t. } \\
& \\
& \\
x(0) \in[4,5] & \\
x(1) \in[2,3] & \\
x(t) \in[2,5]
\end{array}
$$

Simplest example (1/3)

$\inf _{x(t)} \int_{0}^{1} x^{2} \mathrm{~d} t$

$$
\inf _{\left(\mu, \mu_{0}, \mu_{T}\right)}\left\langle\underline{x}^{2}, \mu\right\rangle
$$

$$
\text { s.t. } \dot{x}=-x
$$

$$
\left\langle 1, \mu_{0}\right\rangle=1
$$

$$
\begin{aligned}
& x(0) \in[4,5] \\
& x(1) \in[2,3] \\
& x(t) \in[2,5]
\end{aligned}
$$

$$
\longrightarrow
$$

$$
r
$$

$$
\text { s.t. }\left\langle v(1, \underline{x}), \mu_{T}\right\rangle-\left\langle v(0, \underline{x}), \mu_{0}\right\rangle=\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x}(-\underline{x}), \mu\right\rangle, \forall v \ldots
$$

Simplest example $(1 / 3)$

$$
\inf _{x(t)} \int_{0}^{1} x^{2} \mathrm{~d} t \quad \inf _{\left(\mu, \mu_{0}, \mu_{T}\right)}\left\langle\underline{x}^{2}, \mu\right\rangle
$$

$$
\text { s.t. } \dot{x}=-x
$$

$$
\text { s.t. }\left\langle v(1, \underline{x}), \mu_{T}\right\rangle-\left\langle v(0, \underline{x}), \mu_{0}\right\rangle=\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x}(-\underline{x}), \mu\right\rangle, \forall v \ldots
$$

$$
\left\langle 1, \mu_{0}\right\rangle=1
$$

$$
\begin{array}{ll}
x(0) \in[4,5] & \longrightarrow \\
x(1) \in[2,3] & \mu_{0} \in \mathcal{M}^{+}([4,5]) \\
x(t) \in[2,5] & \\
\mu_{T} \in \mathcal{M}^{+}([2,3]) \\
& \mu \in \mathcal{M}^{+}([0,1] \times[2,5])
\end{array}
$$

Simplest example $(2 / 3)$

Define $y_{\alpha \beta}^{\mu}:=\left\langle t^{\alpha} \underline{x}^{\beta}, \mu\right\rangle, \quad y_{\beta}^{\mu_{0}}:=\left\langle\underline{x}^{\beta}, \mu_{0}\right\rangle, \quad y_{\beta}^{\mu_{T}}:=\left\langle\underline{x}^{\beta}, \mu_{T}\right\rangle$.

Simplest example (2/3)

Define $\quad y_{\alpha \beta}^{\mu}:=\left\langle t^{\alpha} \underline{x}^{\beta}, \mu\right\rangle, \quad y_{\beta}^{\mu_{0}}:=\left\langle\underline{x}^{\beta}, \mu_{0}\right\rangle, \quad y_{\beta}^{\mu_{T}}:=\left\langle\underline{x}^{\beta}, \mu_{T}\right\rangle$.

$$
\inf _{\left(\mu, \mu_{0}, \mu_{T}\right)}\left\langle\underline{x}^{2}, \mu\right\rangle
$$

s.t. $\left\langle v(1, \underline{x}), \mu_{T}\right\rangle-\left\langle v(0, \underline{x}), \mu_{0}\right\rangle=$ $\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x}(-\underline{x}), \mu\right\rangle, \forall v \ldots$

$$
\left\langle 1, \mu_{0}\right\rangle=1
$$

$$
\mu_{0} \in \mathcal{M}^{+}([4,5])
$$

$$
\mu_{T} \in \mathcal{M}^{+}([2,3])
$$

$$
\mu \in \mathcal{M}^{+}([0,1] \times[2,5])
$$

Simplest example $(2 / 3)$

Define $\quad y_{\alpha \beta}^{\mu}:=\left\langle t^{\alpha} \underline{x}^{\beta}, \mu\right\rangle, \quad y_{\beta}^{\mu_{0}}:=\left\langle\underline{x}^{\beta}, \mu_{0}\right\rangle, \quad y_{\beta}^{\mu_{T}}:=\left\langle\underline{x}^{\beta}, \mu_{T}\right\rangle$. $\inf _{\left(\mu, \mu_{0}, \mu_{T}\right)}\left\langle\underline{x}^{2}, \mu\right\rangle$

$$
\inf _{\left(y^{\mu}, y^{\mu_{0}}, y^{\mu_{T}}\right.}
$$

s.t. $\left\langle v(1, \underline{x}), \mu_{T}\right\rangle-\left\langle v(0, \underline{x}), \mu_{0}\right\rangle=$ s.t. $\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x}(-\underline{x}), \mu\right\rangle, \forall v \ldots$
$\left\langle 1, \mu_{0}\right\rangle=1$
$\mu_{0} \in \mathcal{M}^{+}([4,5])$
$\mu_{T} \in \mathcal{M}^{+}([2,3])$
$\mu \in \mathcal{M}^{+}([0,1] \times[2,5])$

Simplest example $(2 / 3)$

Define $\quad y_{\alpha \beta}^{\mu}:=\left\langle t^{\alpha} \underline{x}^{\beta}, \mu\right\rangle, \quad y_{\beta}^{\mu_{0}}:=\left\langle\underline{x}^{\beta}, \mu_{0}\right\rangle, \quad y_{\beta}^{\mu_{T}}:=\left\langle\underline{x}^{\beta}, \mu_{T}\right\rangle$.

$$
\inf _{\left(\mu, \mu_{0}, \mu_{T}\right)}\left\langle\underline{x}^{2}, \mu\right\rangle
$$

$$
\inf _{\left(y^{\mu}, y^{\mu_{0}}, y^{\mu} T\right)} y_{02}^{\mu}
$$

s.t. $\left\langle v(1, \underline{x}), \mu_{T}\right\rangle-\left\langle v(0, \underline{x}), \mu_{0}\right\rangle=$ s.t. $\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x}(-\underline{x}), \mu\right\rangle, \forall v \ldots$

$$
\left\langle 1, \mu_{0}\right\rangle=1
$$

$$
\mu_{0} \in \mathcal{M}^{+}([4,5])
$$

$$
\mu_{T} \in \mathcal{M}^{+}([2,3])
$$

$$
\mu \in \mathcal{M}^{+}([0,1] \times[2,5])
$$

Simplest example $(2 / 3)$

Define $\quad y_{\alpha \beta}^{\mu}:=\left\langle t^{\alpha} \underline{x}^{\beta}, \mu\right\rangle, \quad y_{\beta}^{\mu_{0}}:=\left\langle\underline{x}^{\beta}, \mu_{0}\right\rangle, \quad y_{\beta}^{\mu_{T}}:=\left\langle\underline{x}^{\beta}, \mu_{T}\right\rangle$.

$$
\inf _{\left(\mu, \mu_{0}, \mu_{T}\right)}\left\langle\underline{x}^{2}, \mu\right\rangle \quad \inf _{\left(y^{\mu}, y^{\mu_{0}}, y^{\mu_{T}}\right)} y_{02}^{\mu}
$$

s.t. $\left\langle v(1, \underline{x}), \mu_{T}\right\rangle-\left\langle v(0, \underline{x}), \mu_{0}\right\rangle=$ s.t. $y_{0}^{\mu} T-y_{0}^{\mu_{0}}=0$

$$
[v=1]
$$ $\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x}(-\underline{x}), \mu\right\rangle, \forall v \ldots$

$$
y_{0}^{\mu} T=y_{10}^{\mu}
$$

$$
[v=t]
$$

$$
y_{1}^{\mu_{T}}-y_{0}^{\mu_{0}}=-y_{01}^{\mu}
$$

$$
[v=\underline{x}]
$$

$\left\langle 1, \mu_{0}\right\rangle=1$

$$
y_{0}^{\mu_{0}}=1
$$

$\mu_{0} \in \mathcal{M}^{+}([4,5])$
$\mu_{T} \in \mathcal{M}^{+}([2,3])$
$\mu \in \mathcal{M}^{+}([0,1] \times[2,5])$

Simplest example $(2 / 3)$

Define $\quad y_{\alpha \beta}^{\mu}:=\left\langle t^{\alpha} \underline{x}^{\beta}, \mu\right\rangle, \quad y_{\beta}^{\mu_{0}}:=\left\langle\underline{x}^{\beta}, \mu_{0}\right\rangle, \quad y_{\beta}^{\mu_{T}}:=\left\langle\underline{x}^{\beta}, \mu_{T}\right\rangle$.

$$
\inf _{\left(\mu, \mu_{0}, \mu_{T}\right)}\left\langle\underline{x}^{2}, \mu\right\rangle \quad \inf _{\left(y^{\mu}, y^{\mu_{0}}, y^{\mu_{T}}\right)} y_{02}^{\mu}
$$

S.t. $\left\langle v(1, \underline{x}), \mu_{T}\right\rangle-\left\langle v(0, \underline{x}), \mu_{0}\right\rangle=$ $\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x}(-\underline{x}), \mu\right\rangle, \forall v \ldots$
$\left\langle 1, \mu_{0}\right\rangle=1$
$\mu_{0} \in \mathcal{M}^{+}([4,5])$
$\mu_{T} \in \mathcal{M}^{+}([2,3])$
$\mu \in \mathcal{M}^{+}([0,1] \times[2,5])$
S.t. $y_{0}^{\mu_{T}}-y_{0}^{\mu_{0}}=0$
$[v=1]$
$y_{0}^{\mu_{T}}=y_{10}^{\mu}$

$$
[v=t]
$$

$$
y_{1}^{\mu_{T}}-y_{0}^{\mu_{0}}=-y_{01}^{\mu}
$$

$$
[v=\underline{x}]
$$

$$
y_{0}^{\mu_{0}}=1
$$

$$
M\left(g_{i}^{\mu^{0}} * y^{\mu^{0}}\right) \succeq 0
$$

$$
M\left(g_{i}^{\mu^{T}} * y^{\mu^{T}}\right) \succeq 0
$$

$$
M\left(g_{i}^{\mu} * y^{\mu}\right) \succeq 0
$$

Simplest example (3/3)

- First relaxation: $J_{1}^{*} \approx 8.7$.

Simplest example (3/3)

- First relaxation: $J_{1}^{*} \approx 8.7$.
- Second relaxation is (numerically) certified as unfeasible.

Simplest example (3/3)

- First relaxation: $J_{1}^{*} \approx 8.7$.
- Second relaxation is (numerically) certified as unfeasible.
- With $X_{T}=[1,3]$:

$$
\begin{aligned}
J_{1}^{*} & =6.4000 \\
J_{2}^{*} & =6.9173 \\
& \ldots \\
J^{*} & =6.9173
\end{aligned}
$$

The dual view

Define $\mathcal{L}^{*}: v \mapsto \mathcal{L}^{*} v:=\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f$.

$$
\begin{aligned}
\inf _{\mu, \mu_{0}, \mu_{T}} & \langle h, \mu\rangle \\
\text { s.t. } & \mu_{T}-\mu_{0}=\mathcal{L} \mu, \quad \text { dual to } \\
& \left\langle 1, \mu_{0}\right\rangle=1
\end{aligned}
$$

$$
\sup _{r \in \mathbb{R}, v \in C^{1}} r
$$

s.t. $h+\mathcal{L}^{*} v \geq 0$ on K $v-r \geq 0$ on K_{0}, $-v \geq 0$ on K_{T},

The dual view

Define $\mathcal{L}^{*}: v \mapsto \mathcal{L}^{*} v:=\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f$.

$$
\begin{aligned}
\inf _{\mu, \mu_{0}, \mu_{T}} & \langle h, \mu\rangle \\
\text { s.t. } & \mu_{T}-\mu_{0}=\mathcal{L} \mu, \quad \text { dual to } \\
& \left\langle 1, \mu_{0}\right\rangle=1
\end{aligned}
$$

$$
\sup _{r \in \mathbb{R}, v \in C^{1}} r
$$

$$
\text { s.t. } h+\mathcal{L}^{*} v \geq 0 \text { on } K
$$

$$
v-r \geq 0 \text { on } K_{0},
$$

$$
-v \geq 0 \text { on } K_{T},
$$

\geq replaced by Putinar's SOS certificates: dual to moment LP.

The dual view

Define $\mathcal{L}^{*}: v \mapsto \mathcal{L}^{*} v:=\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f$.

$$
\begin{array}{ccc}
\inf _{\mu, \mu_{0}, \mu_{T}}\langle h, \mu\rangle & \sup _{r \in \mathbb{R}, v \in C^{1}} r \\
\text { s.t. } \mu_{T}-\mu_{0}=\mathcal{L} \mu, & \text { dual to } & \text { s.t. } h+\mathcal{L}^{*} v \geq 0 \text { on } K \\
\left\langle 1, \mu_{0}\right\rangle=1 & v-r \geq 0 \text { on } K_{0}, \\
& -v \geq 0 \text { on } K_{T},
\end{array}
$$

\geq replaced by Putinar's SOS certificates: dual to moment LP.
Certificates of given order: dual to moment relaxation of given order.

Table of contents

(1) Occupation measures
(2) Controlled systems
(3) Examples
(4) Inverse problem
(5) Perspectives

What about control?

Same approach available for a wide class of control systems, provided one agrees to work with relaxed control objects.

What about control?

Same approach available for a wide class of control systems, provided one agrees to work with relaxed control objects.

Overall strategy:
(1) Relax control (Young, Fillipov,...)

What about control?

Same approach available for a wide class of control systems, provided one agrees to work with relaxed control objects.

Overall strategy:
(1) Relax control (Young, Fillipov,...)
(2) Lift as measure LP (Vinter, Rubio, ...)

What about control?

Same approach available for a wide class of control systems, provided one agrees to work with relaxed control objects.

Overall strategy:
(1) Relax control (Young, Fillipov,...)
(2) Lift as measure LP (Vinter, Rubio, ...)
(3) Solve by moment relaxations (Lasserre, ...)

Bounded control (1/2)

Consider $\dot{x}=f(t, x, u), u(t) \in U \subset \mathbb{R}^{m}$.

Bounded control (1/2)

Consider $\dot{x}=f(t, x, u), u(t) \in U \subset \mathbb{R}^{m}$.

Definition (Young measure)

$$
\{\omega(\mathrm{d} \underline{u} \mid t) \in \mathcal{P}(U)\}, \quad[0, T] \text {-a.e }
$$

such that $\forall v \in \mathcal{C}(U), t \rightarrow\langle v, \omega\rangle$ is measurable on $[0, T]$.

Bounded control (1/2)

Consider $\dot{x}=f(t, x, u), u(t) \in U \subset \mathbb{R}^{m}$.

Definition (Young measure)

$$
\{\omega(\mathrm{d} \underline{u} \mid t) \in \mathcal{P}(U)\}, \quad[0, T] \text {-a.e }
$$

such that $\forall v \in \mathcal{C}(U), t \rightarrow\langle v, \omega\rangle$ is measurable on $[0, T]$.

Example 1: For continuous $u(t)$, pick $\omega=\delta_{u(t)}$, so that $\langle f(t, x(t), \underline{u}), \omega\rangle=f(t, x(t), u(t))$

Bounded control (1/2)

Consider $\dot{x}=f(t, x, u), u(t) \in U \subset \mathbb{R}^{m}$.

Definition (Young measure)

$$
\{\omega(\mathrm{d} \underline{u} \mid t) \in \mathcal{P}(U)\}, \quad[0, T] \text {-a.e }
$$

such that $\forall v \in \mathcal{C}(U), t \rightarrow\langle v, \omega\rangle$ is measurable on $[0, T]$.

Example 1: For continuous $u(t)$, pick $\omega=\delta_{u(t)}$, so that $\langle f(t, x(t), \underline{u}), \omega\rangle=f(t, x(t), u(t))$

Example 2: Consider a fast, evenly oscillating sequence in $U=\{-1,1\}$. Tends weakly to $\omega=\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}$. For $f=u, \dot{x}=\langle\underline{u}, \omega\rangle=0$ exactly.

Bounded control (2/2)

Occupation measures with control:

$$
[0, T] \times X \times U
$$

Bounded control (2/2)

Occupation measures with control:

$$
\begin{array}{r}
\mu \in \mathcal{M}^{+}([0, T] \times X \times U) \text { satisfy, } \forall v \in \mathcal{C}([0, T] \times X): \\
{[v(\cdot, x(\cdot))]_{0}^{T}=\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f, \mu\right\rangle}
\end{array}
$$

Bounded control (2/2)

Occupation measures with control:

$$
\begin{array}{r}
\mu \in \mathcal{M}^{+}([0, T] \times X \times U) \text { satisfy, } \forall v \in \mathcal{C}([0, T] \times X): \\
{[v(\cdot, x(\cdot))]_{0}^{T}=\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f, \mu\right\rangle}
\end{array}
$$

[Vinter and Lewis, SICON '78]: No relaxation gap if relaxed control are considered.

Switched systems (1/2)

Switched systems:

$$
\dot{x}=f_{\sigma(t)}(t, x(t)), \quad \sigma(t) \in\{1, \ldots, m\}
$$

Switched systems (1/2)

Switched systems:

$$
\dot{x}=f_{\sigma(t)}(t, x(t)), \quad \sigma(t) \in\{1, \ldots, m\}
$$

Recast as

$$
\begin{gathered}
\dot{x}=\sum_{j=1}^{m} f_{j}(t, x(t)) u_{j}(t) \\
u(t) \in\left\{\underline{u} \in\{0,1\}^{m}: \sum_{j=1}^{m} \underline{u}_{j}=1\right\} .
\end{gathered}
$$

Switched systems (2/2)

Modal occupation measures:

Switched systems (2/2)

Modal occupation measures:

Proposition (MC, Daafouz, Henrion: '14)

$$
\begin{gathered}
{[v(\cdot, x(\cdot))]_{0}^{T}=\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} \sum_{j=1}^{m} f_{j} u_{j}, \mu(d t, d \underline{x}, d \underline{u})\right\rangle} \\
\Leftrightarrow \\
{[v(\cdot, x(\cdot))]_{0}^{T}=\sum_{j=1}^{m}\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f_{j}, \mu_{j}(d t, d \underline{x})\right\rangle}
\end{gathered}
$$

Impulsive systems (1/2)

Consider, with unbounded $u(t)$:

$$
\dot{x}=f(t, x(t))+G(t, x(t)) u(t) .
$$

Impulsive systems (1/2)

Consider, with unbounded $u(t)$:

$$
\dot{x}=f(t, x(t))+G(t, x(t)) u(t)
$$

Control relaxations:

- LTV systems: [Krasovskii '56], [Neustadt,'64]

Impulsive systems (1/2)

Consider, with unbounded $u(t)$:

$$
\dot{x}=f(t, x(t))+G(t, x(t)) u(t) .
$$

Control relaxations:

- LTV systems: [Krasovskii '56], [Neustadt,'64]
- $G(t)$ [Schmaedeke '65]

Impulsive systems (1/2)

Consider, with unbounded $u(t)$:

$$
\dot{x}=f(t, x(t))+G(t, x(t)) u(t) .
$$

Control relaxations:

- LTV systems: [Krasovskii '56], [Neustadt,'64]
- $G(t)$ [Schmaedeke '65]
- $G(t, x(t))$ [Bressan and Rampazzo, '88]

Impulsive systems (1/2)

Consider, with unbounded $u(t)$:

$$
\dot{x}=f(t, x(t))+G(t, x(t)) u(t) .
$$

Control relaxations:

- LTV systems: [Krasovskii '56], [Neustadt,'64]
- $G(t)$ [Schmaedeke '65]
- $G(t, x(t))$ [Bressan and Rampazzo, '88]

Graph completions:

Impulsive systems (2/2)

Impulsive occupation measures:

Impulsive systems (2/2)

Impulsive occupation measures:

Satisfy:

$$
[v(\cdot, x(\cdot))]_{0}^{T}=\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f, \mu\right\rangle+\left\langle\frac{\partial v}{\partial x} G, \nu\right\rangle
$$

Impulsive systems (2/2)

Impulsive occupation measures:

Satisfy:

$$
[v(\cdot, x(\cdot))]_{0}^{T}=\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f, \mu\right\rangle+\left\langle\frac{\partial v}{\partial x} G, \nu\right\rangle
$$

[MC: thesis '13]
[MC, Arzelier, Henrion, Lasserre: CDC'13] LTV case

Other systems . . .

Stochastic systems:

- [Fleming and Vermes, SICON '89], [Bhatt and Borkar, Ann. Prob. '96], [Kurtz, Stockbridge: SICON '98] for convex lift.
- [Lasserre, "Moments, positive polynomials..."] for some applications in finance via moment relaxations.
- [MC and Carignano, soon] for system identification.

Other systems ...

Stochastic systems:

- [Fleming and Vermes, SICON '89], [Bhatt and Borkar, Ann. Prob. '96], [Kurtz, Stockbridge: SICON '98] for convex lift.
- [Lasserre, "Moments, positive polynomials..."] for some applications in finance via moment relaxations.
- [MC and Carignano, soon] for system identification.

Concentration and oscillations (material science applications):

- DiPerna-Majda measures as control relaxations.
- [MC, Kruzik and Henrion, MTNS '14] solve by moment programming.

Table of contents

(1) Occupation measures
(2) Controlled systems
(3) Examples
(4) Inverse problem
(5) Perspectives

Example: contrast problem (1/4)

Example: contrast problem (2/4)

- [Bonnard, MC, Cots, Martinon: Acta Math. App. '14]

Example: contrast problem (2/4)

- [Bonnard, MC, Cots, Martinon: Acta Math. App. '14]

$$
\begin{aligned}
& \inf -x_{3}^{2}(T)-x_{4}^{2}(T) \\
& \text { s.t. } \quad \dot{x}_{1}=-\Gamma_{1} x_{1}-x_{2} u \\
& \qquad \begin{aligned}
\dot{x}_{2} & =\gamma_{1}\left(1-x_{2}\right)+x_{1} u \\
\dot{x}_{3} & =-\Gamma_{2} x_{3}-x_{4} u \\
\dot{x}_{4} & =\gamma_{2}\left(1-x_{4}\right)+x_{3} u,
\end{aligned}
\end{aligned}
$$

Example: contrast problem (3/4)

Example: contrast problem (3/4)

	Measured control		Control measure	
r	$\sqrt{-J_{M}^{r}}$	t_{r}	$\sqrt{-J_{M}^{r}}$	t_{r}
1	1.000	1	0.9827	0.6
2	0.8984	2	0.8756	1.0
3	0.8707	9	0.8599	6.6
4	0.8256	265	0.7973	113
5	0.7881	5147	0.7891	1298
6	0.7867	50027	0.7871	10831

Example: contrast problem (4/4)

Complexity as $r \rightarrow \infty$ of [Lasserre et al. '08]: $\mathcal{O}\left(r^{\frac{9}{2}(1+n+m)}\right)$

Example: contrast problem (4/4)

Complexity as $r \rightarrow \infty$ of [Lasserre et al. '08]: $\mathcal{O}\left(r^{\frac{9}{2}(1+n+m)}\right)$
Complexity as $r \rightarrow \infty$ of [MC et al. '14]: $\mathcal{O}\left(m^{\frac{3}{2}} r^{\frac{9}{2}(1+n)}\right)$

Example: contrast problem (4/4)

Complexity as $r \rightarrow \infty$ of [Lasserre et al. '08]: $\mathcal{O}\left(r^{\frac{9}{2}(1+n+m)}\right)$
Complexity as $r \rightarrow \infty$ of [MC et al. '14]: $\mathcal{O}\left(m^{\frac{3}{2}} r^{\frac{9}{2}(1+n)}\right)$

Example: electric car (1/2)

- [Sager, MC, Messine: JOGO'14]

$$
\begin{aligned}
& \inf _{u(t)} \int_{0}^{10}\left(V_{\text {alim }} x_{0} u+R_{b a t} x_{0}^{2}\right) d t \\
& \text { s.t. } \dot{x}_{0}=-\frac{R_{m}}{L_{m}} x_{0}-\frac{K_{m}}{L_{m}} x_{1}+\frac{V_{a l i m}}{L_{m}} u, \\
& \quad \dot{x}_{1}=\frac{K_{m}}{J} x_{0}-\frac{r M g K_{f}}{J K_{r}}-\frac{r^{3} \rho S C_{x}}{2 J K_{r}^{3}} x_{1}^{2}, \\
& \dot{x}_{2}=\frac{r}{K_{r}} x_{1}, \\
& \left|x_{0}(t)\right| \leq I_{\max } \\
& u(t) \in\{-1,+1\}, \\
& \quad x_{2}(10)-x_{2}(0)=100 .
\end{aligned}
$$

Example: electric car (1/2)

- [Sager, MC, Messine: JOGO'14]

$$
\begin{aligned}
& \inf _{u(t)} \int_{0}^{10}\left(V_{\text {alim }} x_{0} u+R_{b a t} x_{0}^{2}\right) d t \\
& \text { s.t. } \dot{x}_{0}=-\frac{R_{m}}{L_{m}} x_{0}-\frac{K_{m}}{L_{m}} x_{1}+\frac{V_{a l i m}}{L_{m}} u,
\end{aligned}
$$

Example: electric car (2/2)

r	Measured control	Control measure
1	0.5	0.5
2	1.0	1.2
3	4.7	3.0
4	12	3.5
5	63	7.8
6	997	23

Table of contents

(1) Occupation measures
(2) Controlled systems
(3) Examples
(4) Inverse problem
(5) Perspectives

The moment approach

Inverse problem

Given $\left\{y_{\alpha}\right\}_{|\alpha| \leq 2 r}$ and dual SOS variables, can we reconstruct $\left(u^{*}(t), x^{*}(t)\right)$?

Method 1: duality

Dual object $V \in \mathbb{R}_{2 r}[t, \underline{x}]$ is HJB subsolution:

$$
\begin{equation*}
h-\frac{\partial V}{\partial t}-\frac{\partial V}{\partial \underline{x}} f \geq 0 \tag{1}
\end{equation*}
$$

Method 1: duality

Dual object $V \in \mathbb{R}_{2 r}[t, \underline{x}]$ is HJB subsolution:

$$
\begin{equation*}
h-\frac{\partial V}{\partial t}-\frac{\partial V}{\partial \underline{x}} f \geq 0 \tag{1}
\end{equation*}
$$

Equality holds in (1) "at" optimum.

Method 1: duality

Dual object $V \in \mathbb{R}_{2 r}[t, \underline{x}]$ is HJB subsolution:

$$
\begin{equation*}
h-\frac{\partial V}{\partial t}-\frac{\partial V}{\partial \underline{x}} f \geq 0 \tag{1}
\end{equation*}
$$

Equality holds in (1) "at" optimum.

Procedure:

Method 1: duality

Dual object $V \in \mathbb{R}_{2 r}[t, \underline{x}]$ is HJB subsolution:

$$
\begin{equation*}
h-\frac{\partial V}{\partial t}-\frac{\partial V}{\partial \underline{x}} f \geq 0 \tag{1}
\end{equation*}
$$

Equality holds in (1) "at" optimum.

Procedure:
(1) Fix time grid, fix state-control grid

Method 1: duality

Dual object $V \in \mathbb{R}_{2 r}[t, \underline{x}]$ is HJB subsolution:

$$
\begin{equation*}
h-\frac{\partial V}{\partial t}-\frac{\partial V}{\partial \underline{x}} f \geq 0 \tag{1}
\end{equation*}
$$

Equality holds in (1) "at" optimum.

Procedure:
(1) Fix time grid, fix state-control grid
(2) For each t_{i}, find $\left(x_{j}^{*}, u_{j}^{*}\right)$ minimizing LHS of (1).

Method 2: polynomial density

[Henrion, Lasserre, Mevissen. App. Math. Optim. '13].

Method 2: polynomial density

[Henrion, Lasserre, Mevissen. App. Math. Optim. '13].

Assume $y_{k 0 \ldots 010 \ldots 0}=\left\langle t^{k} z(t), \lambda\right\rangle$

Method 2: polynomial density

[Henrion, Lasserre, Mevissen. App. Math. Optim. '13].

Assume $y_{k 0 \ldots 010 \ldots 0}=\left\langle t^{k} z(t), \lambda\right\rangle$

Then polynomial $\tilde{z}(t)$ approaching $z(t)$ in the mean squared sense is found by solving a simple linear system.

Method 3: atomic approximations

[MC, CDC '14]
Support of occupation measure $=$ optimal trajectory(ies)/control(s).

Method 3: atomic approximations

[MC, CDC '14]
Support of occupation measure $=$ optimal trajectory(ies)/control(s).
Procedure (see also [Rubio 86]):

Method 3: atomic approximations

[MC, CDC '14]

Support of occupation measure $=$ optimal trajectory(ies)/control(s).
Procedure (see also [Rubio 86]):
(1) Choose state/control to identify

Method 3: atomic approximations

[MC, CDC '14]

Support of occupation measure $=$ optimal trajectory(ies)/control(s).
Procedure (see also [Rubio 86]):
(1) Choose state/control to identify
(2) Fix time and state/control grid \mathbf{Z}_{ε}

Method 3: atomic approximations

[MC, CDC '14]

Support of occupation measure $=$ optimal trajectory(ies)/control(s).
Procedure (see also [Rubio 86]):
(1) Choose state/control to identify
(2) Fix time and state/control grid \mathbf{Z}_{ε}
(3) Find best atomic approximation $\tilde{\mu} \in \mathcal{M}^{+}\left(\mathbf{Z}_{\varepsilon}\right)$ on the grid via

$$
\begin{aligned}
\lambda_{\varepsilon}^{*}= & \min _{\widetilde{\mu}, \lambda} \lambda \\
& \text { s.t. }\left|y_{\alpha}-\left\langle z^{\alpha}, \tilde{\mu}\right\rangle\right| \leq \lambda
\end{aligned}
$$

Method 3: atomic approximations

[MC, CDC '14]

Support of occupation measure $=$ optimal trajectory(ies)/control(s).
Procedure (see also [Rubio 86]):
(1) Choose state/control to identify
(2) Fix time and state/control grid \mathbf{Z}_{ε}
(3) Find best atomic approximation $\tilde{\mu} \in \mathcal{M}^{+}\left(\mathbf{Z}_{\varepsilon}\right)$ on the grid via

$$
\begin{aligned}
\lambda_{\varepsilon}^{*}= & \min _{\tilde{\mu}, \lambda} \lambda \\
& \text { s.t. }\left|y_{\alpha}-\left\langle z^{\alpha}, \tilde{\mu}\right\rangle\right| \leq \lambda
\end{aligned}
$$

(4) Approximate support $=$ non-zero atoms.

Example 1

Example 2: invariant measure

Invariant measure:

$$
\begin{gathered}
\exists \mu \text { ? s.t. } \forall v \in \mathbb{R}[\underline{x}]:\left\langle\frac{\partial v}{\partial \underline{x}} f, \mu\right\rangle=0, \\
\langle 1, \mu\rangle=1 \\
\mu \in \mathcal{M}^{+}(\mathbf{X})
\end{gathered}
$$

Example 2: invariant measure

Invariant measure:

$$
\begin{gathered}
\exists \mu \text { ? s.t. } \forall v \in \mathbb{R}[\underline{x}]:\left\langle\frac{\partial v}{\partial \underline{x}} f, \mu\right\rangle=0, \\
\langle 1, \mu\rangle=1 \\
\mu \in \mathcal{M}^{+}(\mathbf{X})
\end{gathered}
$$

Van der Pol oscillator:

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-x_{1}+\left(1-x_{1}^{2}\right) x_{2} .
\end{aligned}
$$

Example 2: invariant measure

Invariant measure:

$$
\begin{gathered}
\exists \mu \text { ? s.t. } \forall v \in \mathbb{R}[\underline{x}]:\left\langle\frac{\partial v}{\partial \underline{x}} f, \mu\right\rangle=0, \\
\langle 1, \mu\rangle=1, \\
\mu \in \mathcal{M}^{+}(\mathbf{X}),
\end{gathered}
$$

Van der Pol oscillator:

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-x_{1}+\left(1-x_{1}^{2}\right) x_{2} .
\end{aligned}
$$

Table of contents

(1) Occupation measures
(2) Controlled systems
(3) Examples
(4) Inverse problem
(5) Perspectives

The moment approach

Highlights

- Global resolution of optimal control problems.

Highlights

- Global resolution of optimal control problems.
- Vast classes of systems covered.

Highlights

- Global resolution of optimal control problems.
- Vast classes of systems covered.
- Extends to $\div \sqrt{\cdot}, \min (\cdot, \cdot)$, piecewise, \ldots

Highlights

- Global resolution of optimal control problems.
- Vast classes of systems covered.
- Extends to $\vdots, \sqrt{\cdot}, \min (\cdot, \cdot)$, piecewise, \ldots
- State constraints easily handled.

Highlights

- Global resolution of optimal control problems.
- Vast classes of systems covered.
- Extends to $\vdots, \sqrt{\cdot}, \min (\cdot, \cdot)$, piecewise, \ldots
- State constraints easily handled.
- Can certify infeasibility.

Highlights

- Global resolution of optimal control problems.
- Vast classes of systems covered.
- Extends to $\vdots, \sqrt{\cdot}, \min (\cdot, \cdot)$, piecewise, \ldots
- State constraints easily handled.
- Can certify infeasibility.
- Straightforward implementation with GloptiPoly.

Highlights

- Global resolution of optimal control problems.
- Vast classes of systems covered.
- Extends to $\vdots, \sqrt{\cdot}, \min (\cdot, \cdot)$, piecewise, \ldots
- State constraints easily handled.
- Can certify infeasibility.
- Straightforward implementation with GloptiPoly.
- Unstructured problems: $n+m \leq 6$, but SDP solvers are getting fast (Mosek) ...

Highlights

- Global resolution of optimal control problems.
- Vast classes of systems covered.
- Extends to $\vdots, \sqrt{\cdot}, \min (\cdot, \cdot)$, piecewise, \ldots
- State constraints easily handled.
- Can certify infeasibility.
- Straightforward implementation with GloptiPoly.
- Unstructured problems: $n+m \leq 6$, but SDP solvers are getting fast (Mosek) ...

Thanks!

Presentation available at
 http://mathclaeys.wordpress.com

